Increasing levels of Parasutterella in the gut microbiome correlate with improving low-density lipoprotein levels in healthy adults consuming resistant potato starch during a randomised trial

Jason R Bush, Michelle J Alfa, Jason R Bush, Michelle J Alfa

Abstract

Background: Prebiotics, defined as a substrate that is selectively utilized by host microorganisms conferring a health benefit, present a potential option to optimize gut microbiome health. Elucidating the relationship between specific intestinal bacteria, prebiotic intake, and the health of the host remains a primary microbiome research goal.

Objective: To assess the correlations between gut microbiota, serum health parameters, and prebiotic consumption in healthy adults.

Methods: We performed ad hoc exploratory analysis of changes in abundance of genera in the gut microbiome of 75 participants from a randomized, placebo-controlled clinical trial that evaluated the effects of resistant potato starch (RPS; MSPrebiotic®, N = 38) intervention versus a fully digestible placebo (N = 37) for which primary and secondary outcomes have previously been published. Pearson correlation analysis was used to identify relationships between health parameters (ie. blood glucose and lipids) and populations of gut bacteria.

Results: Abundance of Parasutterella (phylum Proteobacteria) tended to increase in the gut microbiome of individuals consuming RPS and those increases in Parasutterella were correlated with reductions in low-density lipoprotein (LDL) levels in participants consuming RPS but not placebo. Segregating RPS-consuming individuals whose LDL levels decreased (ie "Responders") from those who did not (ie. "Non-Responders") revealed that LDL Responders had significantly higher levels of Parasutterella both at baseline and after 12 weeks of consuming RPS.

Conclusion: Our analyses suggest that RPS may help improve LDL levels depending upon the levels of Parasutterella in an individual's gut microbiome.

Trial registration: This study protocol was reviewed and approved by Health Canada (Submission #188517; "Notice of Authorization" dated 06/05/13) and registered as NCT01977183 (10/11/13) listed on NIH website: ClinicalTrials.gov. Data generated in this study have been submitted to NCBI ( http://www.ncbi.nlm.nih.gov/bioproject/381931 ).

Funding: MSP Starch Products Inc.

Keywords: Cholesterol; LDL; Parasutterella; Potato; Proteobacteria; Resistant starch.

Conflict of interest statement

Jason Bush is employed by and Michelle Alfa provides consulting services for MSP Starch Products Inc., Carberry, MB, Canada, who manufacture MSPrebiotic® resistant potato starch.

Figures

Fig. 1
Fig. 1
CONSORT Flow Diagram. Number of participants analyzed; RPS n = 38, placebo n = 37, unless otherwise specified
Fig. 2
Fig. 2
Mean change (+/− SEM) in relative abundance for each genus discretely identified in individuals consuming RPS for 12 weeks. Parasutterella, indicated by the black arrow, was the only genus in phylum Proteobacteria to increase in response to RPS
Fig. 3
Fig. 3
Mean change (+/− SEM) in relative abundance for each genus discretely identified in individuals consuming placebo for 12 weeks
Fig. 4
Fig. 4
a RPS consumption tended to increase mean levels of Parasutterella by two-fold (p = 0.0711) while Parasutterella levels were unchanged in those consuming placebo (+/− SEM, p = 0.291). b Segregation of the RPS group into those who displayed a decrease in LDL levels (Responders) and those whose levels increased or remained the same (Non-Responders) revealed that mean Parasutterella levels were significantly higher in Responders at both baseline and week 14 (+/− SEM). *; p < 0.05
Fig. 5
Fig. 5
a Baseline LDL levels were significantly different between Responders and Non-Responders in the Placebo group (p = 0.00245) but indistinguishable at Week 14 (+/− SD; p = 0.91978). b Baseline LDL levels were indistinguishable between Responders and Non-Responders in the RPS group (p = 0.85119) but were significant different at Week 14 (+/− SD; p = 0.00814). *; p < 0.05

References

    1. Cani P. Human gut microbiome: hopes, threats and promises. Gut. 2018;67(9):1716–1725. doi: 10.1136/gutjnl-2018-316723.
    1. Gibson G, Hutkins R, Sanders M, Prescott S, Reimer R, Salminen S, Scott K, Stanton C, Swanson K, Cani P, Verbeke K, Reid G. Expert consensus document: the international scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol. 2017;14(8):491–502. doi: 10.1038/nrgastro.2017.75.
    1. Alfa MJ, Strang D, Tappia PS, Olson N, DeGagne P, Bray D, Murray B-L, Hiebert B. A Randomized Placebo Controlled Clinical Trial to Determine the Impact of Digestion Resistant Starch MSPrebiotic on Glucose, Insulin, and Insulin Resistance in Elderly and Mid-Age Adults. Front Med (Lausanne) 2018;4:260. doi: 10.3389/fmed.2017.00260.
    1. Alfa MJ, Strang D, Tappia PS, Graham M, Van Domselaar G, Forbes JD, Laminman V, Olson N, DeGagne P, Bray D, Murray B-L, Dufault B, Lix LM. A randomized trial to determine the impact of a digestion resistant. Clin Nutr. 2018;37(3):797–807. doi: 10.1016/j.clnu.2017.03.025.
    1. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalová L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E, Segal E. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079–1094. doi: 10.1016/j.cell.2015.11.001.
    1. Bush JR, Alfa MJ. Decreasing levels of Sporacetigenium correlate with improved diabetic parameters in healthy adults consuming MSPrebiotic® digestion resistant starch. J Aging Res Clin Pract. 2018;7:176–180.
    1. De Vuyst L, Leroy F. Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production. Int J Food Microbiol. 2011;149(1):73–80. doi: 10.1016/j.ijfoodmicro.2011.03.003.
    1. Scaldaferri F, Gerardi V, Mangiola F, Lopetuso L, Pizzoferrato M, Petito V, Papa A, Stojanovic J, Poscia A, Cammarota G, Gasbarrini A. Role and mechanisms of action of Escherichia coli Nissle 1917 in the maintenance of remission in ulcerative colitis patients: an update. World J Gastoenterol. 2016;22(24):5505–5511. doi: 10.3748/wjg.v22.i24.5505.
    1. Gomes T, Elias W, Guth SIB, Rodrigues J, Piazza R, Ferreira L, Martinez M. Diarrheagenic Escherichia coli. Braz J Microbiol. 2016;47(Suppl 1):3–30. doi: 10.1016/j.bjm.2016.10.015.
    1. Ju T, Yoon Kong J, Stothard P, Willing BP. Defining the role of Parasutterella, a previously uncharacterized member of the core gut microbiota. ISME J. 2019;13:1520–1534. doi: 10.1038/s41396-019-0364-5.
    1. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537–7541. doi: 10.1128/AEM.01541-09.
    1. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–5120. doi: 10.1128/AEM.01043-13.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289–300.
    1. Vivanti V, Finotti E, Friedman M. Level of acrylamide precursors asparagine, fructose, glucose, and sucrose in potatoes sold at retail in Italy and in the United States. J Food Sci. 2006;71(2):C81–C85. doi: 10.1111/j.1365-2621.2006.tb08886.x.
    1. DeMartino P, Cockburn DW. Resistant starch: impact on the gut microbiome and health. Curr Opin Biotechnol. 2020;61:66–77. doi: 10.1016/j.copbio.2019.10.008.
    1. Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7(1):91. doi: 10.1186/s40168-019-0704-8.
    1. Jones PH, Davidson MH, Stein EA, Bays HE, McKenney JM, Miller E, Cain VA, Blasetto JW, STELLAR Study Group Comparison of the efficacy and safety of Rosuvastatin versus atorvastatin, simvastatin, and pravastatin across doses (STELLAR* trial) Am J Cardiol. 2003;92(2):152–160. doi: 10.1016/S0002-9149(03)00530-7.
    1. Nagai F, Morotomi M, Sakon H, Tanaka R. Parasutterella excrementihominis gen. Nov., sp. nov., a member of the family Alcaligenaceae isolated from human faeces. Int J Syst Evol Microbiol. 2009;59(Pt 7):1793–1797. doi: 10.1099/ijs.0.002519-0.
    1. Chen Y, Xiao S, Gong Z, Zhu X, Yang Q, Li Y, Gao S, Dong Y, Shi Z, Wang Y, Weng X, Li Q, Cai W, Qiang W. Wuji Wan formula ameliorates diarrhea and disordered colonic motility in post-inflammation irritable bowel syndrome rats by modulating the gut microbiota. Front Microbiol. 2017;8:2307. doi: 10.3389/fmicb.2017.02307.
    1. Lin C, Chen Y, Tsai T, Pan T. Effects of deep sea water and lactobacillus paracasei subsp. paracasei NTU 101 on hypercholesterolemia hamsters gut microbiota. Appl Microbiol Biotechnol. 2017;101(1):321–329. doi: 10.1007/s00253-016-7868-y.
    1. Xie M, Chen G, Wan P, Dai Z, Hu B, Chen L, Ou S, Zeng X, Sun Y. Modulating effects of Dicaffeoylquinic acids from Ilex kudingcha on intestinal microecology in vitro. J Agric Food Chem. 2017;65(47):10185–10196. doi: 10.1021/acs.jafc.7b03992.
    1. Sun Y, Chen S, Wei R, Xie X, Wang C, Fan S, Zhang X, Su J, Liu J, Jia W, Wang X. Metabolome and gut microbiota variation with long-term intake of Panax ginseng extracts on rats. Food Funct. 2018;9(6):3547–3556. doi: 10.1039/C8FO00025E.
    1. Cheng W, Lu J, Lin W, Wei X, Li H, Zhao X, Jiang A, Yuan J. Effects of a galacto-oligosaccharide-rich diet on fecal microbiota and metabolite profiles in mice. Food Funct. 2018;9(3):1612–1620. doi: 10.1039/C7FO01720K.
    1. Kreutzer C, Peters S, Schulte D, Fangmann D, Türk K, Wolff S, van Eimeren T, Ahrens M, Beckmann J, Schafmayer C, Becker T, Kerby T, Rohr A, Riedel C, Heinsen F, Degenhardt F, Franke A, Rosenstiel P, Zubek N, Henning C, Freitag-Wolf S, Dempfle A, Psilopanagioti A, Petrou-Papadaki H, Lenk L, Jansen O, Schreiber S, Laudes M. Hypothalamic inflammation in human obesity is mediated by environmental and genetic factors. Diabetes. 2017;66(9):2407–2415. doi: 10.2337/db17-0067.
    1. Li L, Guo W-L, Zhang W, Xu J-X, Qian M, Bai W-D, Zhang Y-Y, Rao P-F, Ni L, Lv X-C. Grifola Frondosa polysaccharides ameliorate lipid metabolic disorders and gut microbiota Dysbiosis in high-fat diet fed rats. Food Funct. 2019;10(5):2560–2572. doi: 10.1039/C9FO00075E.
    1. Deehan EC, Yang C, Perez-Munoz ME, Nguyen NK, Cheng CC, Triador L, Zhang Z, Bakal JA, Walter J. Precision microbiome modulation with discrete dietary Fiber structures directs short-chain fatty acid production. Cell Host Microbe. 2020;27(3):389–404. doi: 10.1016/j.chom.2020.01.006.
    1. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65:330–339. doi: 10.1136/gutjnl-2015-309990.

Source: PubMed

3
Abonnieren