Age Dependence and Isotype Specificity of Influenza Virus Hemagglutinin Stalk-Reactive Antibodies in Humans

Raffael Nachbagauer, Angela Choi, Ruvim Izikson, Manon M Cox, Peter Palese, Florian Krammer, Raffael Nachbagauer, Angela Choi, Ruvim Izikson, Manon M Cox, Peter Palese, Florian Krammer

Abstract

Influenza remains a major global health burden. Seasonal vaccines offer protection but can be rendered less effective when the virus undergoes extensive antigenic drift. Antibodies that target the highly conserved hemagglutinin stalk can protect against drifted viruses, and vaccine constructs designed to induce such antibodies form the basis for a universal influenza virus vaccine approach. In this study, we analyzed baseline and postvaccination serum samples of children (6 to 59 months), adults (18 to 49 years), and elderly individuals (≥65 years) who participated in clinical trials with a recombinant hemagglutinin-based vaccine. We found that baseline IgG and IgA antibodies against the H1 stalk domain correlated with the ages of patients. Children generally had very low baseline titers and did not respond well to the vaccine in terms of making stalk-specific antibodies. Adults showed the highest induction of stalk-specific antibodies, but the elderly had the highest absolute antibody titers against the stalk. Importantly, the stalk antibodies measured by enzyme-linked immunosorbent assay (ELISA) showed neutralizing activity in neutralization assays and protected mice in a passive-transfer model in a stalk titer-dependent manner. Finally, we found similar patterns of stalk-specific antibodies directed against the H3 and influenza B virus hemagglutinins, albeit at lower levels than those measured against the H1 stalk. The relatively high levels of stalk-specific antibodies in the elderly patients may explain the previously reported low influenza virus infection rates in this age group. (This study has been registered at ClinicalTrials.gov under registration no. NCT00336453, NCT00539981, and NCT00395174.)

Importance: The present study provides evidence that titers of broadly neutralizing hemagglutinin stalk-reactive antibodies increase with age, possibly due to repeated exposure to divergent influenza viruses. These relatively high levels of antistalk titers may be responsible for lower circulation rates of influenza viruses in older individuals. Our findings suggest that the level of antistalk antibodies is a good surrogate marker for protection against influenza virus infection. In addition, the levels of antistalk antibodies might determine the breadth of protection against different drifted strains.

Copyright © 2016 Nachbagauer et al.

Figures

FIG 1
FIG 1
Titers of antistalk antibodies are age dependent. (A) Group 1/H1 stalk antibodies increase with age. Mean baseline titers for children (165.3) are lower than for adults (1674.4) and are significantly higher in elderly individuals (5740.6, P < 0.0001). (B) Induction of group 1/H1 stalk antibodies after vaccination with a recombinant HA vaccine is highest in adults (2.7) and relatively low in children (1.6) and the elderly (1.4). (C) Group 2/H3 baseline stalk antibody levels are higher (436.2) than H1 antibodies in children but do not increase as steadily with age (adults, 981.6; elderly, 1412.3). (D) Induction of group 2/H3 stalk antibodies postvaccination is not significantly higher in children (1.5) than in adults (1.3) and elderly individuals (1.3). (E) Influenza B baseline stalk antibody titers increase with age in a manner similar to that seen with H1 and H3 stalk antibodies. They are low for children (324.9), higher for adults (714.1), and highest in elderly individuals (1139.1). (F) Influenza B stalk antibodies increase slightly in adults (1.9) after vaccination but barely for children (1.2) and not at all in elderly individuals (1.0). (G) Baseline titers for group 1/H1 stalk are plotted against fold induction after vaccination. The sizes of the symbols correspond to the numbers of samples. Induction is generally low for individuals with baseline titers lower than 800 and higher than 12,800. Most of the adult population consists of high inducers, while children show mostly low titers and low induction and elderly individuals have high titers and low induction.
FIG 2
FIG 2
IgA but not IgM anti-group 1/H1 stalk titers are induced postvaccination. (A) IgA baseline titers against the H1 stalk domain follow a pattern similar to (but lower than) that shown for IgG titers. Children start at a low titer (186.6), while adults show slightly higher titers (224.1) and elderly individuals have the highest titers (778.5). (B) Adults show the strongest induction for IgA against the H1 stalk domain (2.2), while children remain close to baseline (1.1) and elderly individuals increase slightly (1.6). (C) IgM titers against the H1 stalk domain are higher in adults (1,218.1) than in children (492.5) and elderly individuals (746.4). (D) No induction of IgM is seen in adults and elderly individuals 28 days after vaccination and very low induction is seen in children (1.2).
FIG 3
FIG 3
Isotype composition of the group 1/H1 antistalk response. (A) IgG antibodies against the group 1/H1 stalk domain are predominantly of the IgG1 and IgG3 subclasses, while there is very low reactivity for IgG2 and no reactivity for IgG4. (B) Responses against the full-length H1 protein used in the vaccine. Interestingly, adults and the elderly seem to have low IgG2 reactivity to the H1 head domain.
FIG 4
FIG 4
Antistalk neutralization titers. (A) Neutralizing titers against a virus with an H1 stalk domain show a pattern of age-related titer increases similar to that for the ELISA titers. The mean of the IC50 values is very low in children (13.2) but increases after vaccination (19.7). The adults start with medium titers (34.8) and increase to a titer of 97.3. Elderly individuals start at a titer of 93.0 and increase slightly to a titer of 109.8 after vaccination. (B) The microneutralization IC50s against a virus containing the H1 stalk domain correlate very well with the H1 titers measured by ELISA (Spearman r = 0.7094, P < 0.0001).
FIG 5
FIG 5
In vivo efficacy of antistalk antibodies. (A) Day 0 and day 28 serum samples were pooled separately for each age group and intraperitoneally injected into five 6- to 8-week-old BALB/c mice for each pool. Two hours later, mice where challenged with the cH9/1N3 virus. Six days later, lungs were harvested and virus titers in lungs were measured. (B) The virus titers in the lungs of mice that received the children’s prevaccination serum were almost as high as in the naive challenged mice. The titers were lower in the mice receiving the postvaccination children’s serum. There was virus detectable in the mice that received adult prevaccination sera but not in those receiving adult postvaccination sera. Both the pre- and the postvaccination sera of the elderly individuals were protective in mice. (B) The virus lung titers negatively correlate with the IgG titers against the H1 stalk.

References

    1. Jayasundara K, Soobiah C, Thommes E, Tricco AC, Chit A. 2014. Natural attack rate of influenza in unvaccinated children and adults: a meta-regression analysis. BMC Infect Dis 14:670. doi:10.1186/s12879-014-0670-5.
    1. Krammer F, Palese P. 2015. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov 14:167–182. doi:10.1038/nrd4529.
    1. Tricco AC, Chit A, Soobiah C, Hallett D, Meier G, Chen MH, Tashkandi M, Bauch CT, Loeb M. 2013. Comparing influenza vaccine efficacy against mismatched and matched strains: a systematic review and meta-analysis. BMC Med 11:153. doi:10.1186/1741-7015-11-153.
    1. Heaton NS, Sachs D, Chen CJ, Hai R, Palese P. 2013. Genome-wide mutagenesis of influenza virus reveals unique plasticity of the hemagglutinin and NS1 proteins. Proc Natl Acad Sci U S A 110:20248–20253. doi:10.1073/pnas.1320524110.
    1. Gerdil C. 2003. The annual production cycle for influenza vaccine. Vaccine 21:1776–1779. doi:10.1016/S0264-410X(03)00071-9.
    1. Wrammert J, Smith K, Miller J, Langley WA, Kokko K, Larsen C, Zheng N, Mays I, Garman L, Helms C, James J, Wrammert J, Smith K, Miller J, Langley WA, Kokko K, Larsen C, Zheng N, Mays I, Garman L, Helms C, James J, Air GM, Capra JD, Ahmed R, Wilson PC. 2008. Rapid cloning of high-affinity human monoclonal antibodies against influenza virus. Nature 453:667–671. doi:10.1038/nature06890.
    1. Moody MA, Zhang R, Walter EB, Woods CW, Ginsburg GS, McClain MT, Denny TN, Chen X, Munshaw S, Marshall DJ, Whitesides JF, Drinker MS, Amos JD, Gurley TC, Eudailey JA, Foulger A, DeRosa KR, Parks R, Meyerhoff RR, Yu J, Kozink DM, Barefoot BE, Ramsburg EA, Khurana S, Golding H, Vandergrift NA, Alam SM, Tomaras GD, Kepler TB, Kelsoe G, Liao HX, Haynes BF. 2011. H3N2 influenza infection elicits more cross-reactive and less clonally expanded anti-hemagglutinin antibodies than influenza vaccination. PLoS One 6:e25797. doi:10.1371/journal.pone.0025797.
    1. Margine I, Hai R, Albrecht RA, Obermoser G, Harrod AC, Banchereau J, Palucka K, García-Sastre A, Palese P, Treanor JJ, Krammer F. 2013. H3N2 influenza virus infection induces broadly reactive hemagglutinin stalk antibodies in humans and mice. J Virol 87:4728–4737. doi:10.1128/JVI.03509-12.
    1. Throsby M, van den Brink E, Jongeneelen M, Poon LLM, Alard P, Cornelissen L, Bakker A, Cox F, van Deventer E, Guan Y, Cinatl J, ter Meulen JT, Lasters I, Carsetti R, Peiris M, de Kruif J, Goudsmit J. 2008. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One 3:e3942. doi:10.1371/journal.pone.0003942.
    1. Ekiert DC, Friesen RHE, Bhabha G, Kwaks T, Jongeneelen M, Yu W, Ophorst C, Cox F, Korse HJWM, Brandenburg B, Vogels R, Brakenhoff JPJ, Kompier R, Koldijk MH, Cornelissen LAHM, Poon LLM, Peiris M, Koudstaal W, Wilson IA, Goudsmit J. 2011. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333:843–850. doi:10.1126/science.1204839.
    1. Henry Dunand CJ, Leon PE, Kaur K, Tan GS, Zheng N, Andrews S, Huang M, Qu X, Huang Y, Salgado-Ferrer M, Ho IY, Taylor W, Hai R, Wrammert J, Ahmed R, García-Sastre A, Palese P, Krammer F, Wilson PC. 2015. Preexisting human antibodies neutralize recently emerged H7N9 influenza strains. J Clin Invest 125:1255–1268. doi:10.1172/JCI74374.
    1. Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, Silacci C, Fernandez-Rodriguez BM, Agatic G, Bianchi S, Giacchetto-Sasselli I, Calder L, Sallusto F, Collins P, Haire LF, Temperton N, Langedijk JP, Skehel JJ, Lanzavecchia A. 2011. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333:850–856. doi:10.1126/science.1205669.
    1. Friesen RHE, Lee PS, Stoop EJM, Hoffman RMB, Ekiert DC, Bhabha G, Yu W, Juraszek J, Koudstaal W, Jongeneelen M, Korse HJWM, Ophorst C, Brinkman-van der Linden ECM, Throsby M, Kwakkenbos MJ, Bakker AQ, Beaumont T, Spits H, Kwaks T, Vogels R, Ward AB, Goudsmit J, Wilson IA. 2014. A common solution to group 2 influenza virus neutralization. Proc Natl Acad Sci U S A 111:445–450. doi:10.1073/pnas.1319058110.
    1. Tan GS, Lee PS, Hoffman RMB, Mazel-Sanchez B, Krammer F, Leon PE, Ward AB, Wilson IA, Palese P. 2014. Characterization of a broadly neutralizing monoclonal antibody that targets the fusion domain of group 2 influenza A virus hemagglutinin. J Virol 88:13580–13592. doi:10.1128/JVI.02289-14.
    1. Tan GS, Krammer F, Eggink D, Kongchanagul A, Moran TM, Palese P. 2012. A pan-H1 anti-hemagglutinin monoclonal antibody with potent broad-spectrum efficacy in vivo. J Virol 86:6179–6188. doi:10.1128/JVI.00469-12.
    1. Krammer F, Hai R, Yondola M, Tan GS, Leyva-Grado VH, Ryder AB, Miller MS, Rose JK, Palese P, García-Sastre A, Albrecht RA. 2014. Assessment of influenza virus hemagglutinin stalk-based immunity in ferrets. J Virol 88:3432–3442. doi:10.1128/JVI.03004-13.
    1. Krammer F, Pica N, Hai R, Margine I, Palese P. 2013. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J Virol 87:6542–6550. doi:10.1128/JVI.00641-13.
    1. Schneemann A, Speir JA, Tan GS, Khayat R, Ekiert DC, Matsuoka Y, Wilson IA. 2012. A virus-like particle that elicits cross-reactive antibodies to the conserved stem of influenza virus hemagglutinin. J Virol 86:11686–11697. doi:10.1128/JVI.01694-12.
    1. Kanekiyo M, Wei C, Yassine HM, McTamney PM, Boyington JC, Whittle JRR, Rao SS, Kong W, Wang L, Nabel GJ. 2013. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499:102–106. doi:10.1038/nature12202.
    1. Wei CJ, Boyington JC, McTamney PM, Kong WP, Pearce MB, Xu L, Andersen H, Rao S, Tumpey TM, Yang Z-, Nabel GJ. 2010. Induction of broadly neutralizing H1N1 influenza antibodies by vaccination. Science 329:1060–1064. doi:10.1126/science.1192517.
    1. Lu Y, Welsh JP, Swartz JR. 2014. Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc Natl Acad Sci U S A 111:125–130. doi:10.1073/pnas.1308701110.
    1. Bommakanti G, Lu X, Citron MP, Najar TA, Heidecker GJ, ter Meulen J, Varadarajan R, Liang X. 2012. Design of Escherichia coli-expressed stalk domain immunogens of H1N1 hemagglutinin that protect mice from lethal challenge. J Virol 86:13434–13444. doi:10.1128/JVI.01429-12.
    1. Mallajosyula VVA, Citron M, Ferrara F, Lu X, Callahan C, Heidecker GJ, Sarma SP, Flynn JA, Temperton NJ, Liang X, Varadarajan R. 2014. Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc Natl Acad Sci U S A 111:E2514–E2523. doi:10.1073/pnas.1402766111.
    1. Wohlbold TJ, Nachbagauer R, Margine I, Tan GS, Hirsh A, Krammer F. 2015. Vaccination with soluble headless hemagglutinin protects mice from challenge with divergent influenza viruses. Vaccine 33:3314–3321. doi:10.1016/j.vaccine.2015.05.038.
    1. Steel J, Lowen AC, Wang TT, Yondola M, Gao Q, Haye K, García-Sastre A, Palese P. 2010. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. mBio 1:e00018-10. doi:10.1128/mBio.00018-10.
    1. Hai R, Krammer F, Tan GS, Pica N, Eggink D, Maamary J, Margine I, Albrecht RA, Palese P. 2012. Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. J Virol 86:5774–5781. doi:10.1128/JVI.00137-12.
    1. Pica N, Hai R, Krammer F, Wang TT, Maamary J, Eggink D, Tan GS, Krause JC, Moran T, Stein CR, Banach D, Wrammert J, Belshe RB, García-Sastre A, Palese P. 2012. Hemagglutinin stalk antibodies elicited by the 2009 pandemic influenza virus as a mechanism for the extinction of seasonal H1N1 viruses. Proc Natl Acad Sci U S A 109:2573–2578. doi:10.1073/pnas.1200039109.
    1. Cox MMJ, Hollister JR. 2009. FluBlok, a next generation influenza vaccine manufactured in insect cells. Biologicals 37:182–189. doi:10.1016/j.biologicals.2009.02.014.
    1. Yang LPH. 2013. Recombinant trivalent influenza vaccine (Flublok®): a review of its use in the prevention of seasonal influenza in adults. Drugs 73:1357–1366. doi:10.1007/s40265-013-0103-6.
    1. Miller MS, Gardner TJ, Krammer F, Aguado LC, Tortorella D, Basler CF, Palese P. 2013. Neutralizing antibodies against previously encountered influenza virus strains increase over time: a longitudinal analysis. Sci Transl Med 5:198ra107. doi:10.1126/scitranslmed.3006637.
    1. Cox MMJ, Hashimoto Y. 2011. A fast track influenza virus vaccine produced in insect cells. J Invertebr Pathol 107(Suppl):S31–S41. doi:10.1016/j.jip.2011.05.003.
    1. Nachbagauer R, Wohlbold TJ, Hirsh A, Hai R, Sjursen H, Palese P, Cox RJ, Krammer F. 2014. Induction of broadly reactive anti-hemagglutinin stalk antibodies by an H5N1 vaccine in humans. J Virol 88:13260–13268. doi:10.1128/JVI.02133-14.
    1. Ellebedy AH, Krammer F, Li GM, Miller MS, Chiu C, Wrammert J, Chang CY, Davis CW, McCausland M, Elbein R, Edupuganti S, Spearman P, Andrews SF, Wilson PC, García-Sastre A, Mulligan MJ, Mehta AK, Palese P, Ahmed R. 2014. Induction of broadly cross-reactive antibody responses to the influenza HA stem region following H5N1 vaccination in humans. Proc Natl Acad Sci U S A 111:13133–13138. doi:10.1073/pnas.1414070111.
    1. He W, Mullarkey CE, Duty JA, Moran TM, Palese P, Miller MS. 2015. Broadly neutralizing anti-influenza virus antibodies: enhancement of neutralizing potency in polyclonal mixtures and IgA backbones. J Virol 89:3610–3618. doi:10.1128/JVI.03099-14.
    1. Pedersen GK, Höschler K, Øie Solbak SM, Bredholt G, Pathirana RD, Afsar A, Breakwell L, Nøstbakken JK, Raae AJ, Brokstad KA, Sjursen H, Zambon M, Cox RJ. 2014. Serum IgG titres, but not avidity, correlates with neutralizing antibody response after H5N1 vaccination. Vaccine 32:4550–4557. doi:10.1016/j.vaccine.2014.06.009.
    1. Krammer F, Pica N, Hai R, Tan GS, Palese P. 2012. Hemagglutinin stalk-reactive antibodies are boosted following sequential infection with seasonal and pandemic H1N1 influenza virus in mice. J Virol 86:10302–10307.
    1. Krammer F, Margine I, Hai R, Flood A, Hirsh A, Tsvetnitsky V, Chen D, Palese P. 2014. H3 stalk-based chimeric hemagglutinin influenza virus constructs protect mice from H7N9 challenge. J Virol 88:2340–2343. doi:10.1128/JVI.03183-13.
    1. Wrammert J, Koutsonanos D, Li GM, Edupuganti S, Sui J, Morrissey M, McCausland M, Skountzou I, Hornig M, Lipkin WI, Mehta A, Razavi B, Del Rio C, Zheng NY, Lee JH, Huang M, Ali Z, Kaur K, Andrews S, Amara RR, Wang Y, Das SR, O’Donnell CD, Yewdell JW, Subbarao K, Marasco WA, Mulligan MJ, Compans R, Ahmed R, Wilson PC. 2011. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med 208:181–193. doi:10.1084/jem.20101352.
    1. Li G-M, Chiu C, Wrammert J, McCausland M, Andrews SF, Zheng N-, Lee J-, Huang M, Qu X, Edupuganti S, Mulligan M, Das SR, Yewdell JW, Mehta AK, Wilson PC, Ahmed R. 2012. Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proc Natl Acad Sci U S A 109:9047–9052. doi:10.1073/pnas.1118979109.
    1. Halliley JL, Khurana S, Krammer F, Fitzgerald T, Coyle EM, Chung KY, Baker SF, Yang H, Martínez-Sobrido L, Treanor JJ, Subbarao K, Golding H, Topham DJ, Sangster MY. 2015. High-affinity H7 head and stalk domain-specific antibody responses to an inactivated influenza H7N7 vaccine after priming with live attenuated influenza vaccine. J Infect Dis 212:1270–1278. doi:10.1093/infdis/jiv210.
    1. Dilillo DJ, Tan GS, Palese P, Ravetch JV. 2014. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivo. Nat Med 20:143–151. doi:10.1038/nm.3443.
    1. Wohlbold TJ, Chromikova V, Tan GS, Meade P, Amanat F, Comella P, Hirsh A, Krammer F. 28 October 2015. Hemagglutinin stalk- and neuraminidase-specific monoclonal antibodies protect against lethal H10N8 influenza virus infection in mice. J Virol doi:10.1128/JVI.02275-15.
    1. Miller MS, Tsibane T, Krammer F, Hai R, Rahmat S, Basler CF, Palese P. 2013. 1976 and 2009 H1N1 influenza virus vaccines boost anti-hemagglutinin stalk antibodies in humans. J Infect Dis 207:98–105. doi:10.1093/infdis/jis652.
    1. Sangster MY, Baer J, Santiago FW, Fitzgerald T, Ilyushina NA, Sundararajan A, Henn AD, Krammer F, Yang H, Luke CJ, Zand MS, Wright PF, Treanor JJ, Topham DJ, Subbarao K. 2013. B cell response and hemagglutinin stalk-reactive antibody production in different age cohorts following 2009 H1N1 influenza virus vaccination. Clin Vaccine Immunol 20:867–876. doi:10.1128/CVI.00735-12.
    1. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ, Fukuda K. 2003. Mortality associated with influenza and respiratory syncytial virus in the United States. JAMA 289:179–186. doi:10.1001/jama.289.2.179.
    1. Monto AS, Koopman JS, Longini IM. 1985. Tecumseh study of illness. XIII. Influenza infection and disease, 1976–1981. Am J Epidemiol 121:811–822.
    1. Monto AS, Sullivan KM. 1993. Acute respiratory illness in the community. Frequency of illness and the agents involved. Epidemiol Infect 110:145–160. doi:10.1017/S0950268800050779.
    1. Steens A, Waaijenborg S, Teunis PFM, Reimerink JHJ, Meijer A, van der Lubben M, Koopmans M, van der Sande MAB, Wallinga J, van Boven M. 2011. Age-dependent patterns of infection and severity explaining the low impact of 2009 influenza A (H1N1): evidence from serial serologic surveys in the Netherlands. Am J Epidemiol 174:1307–1315. doi:10.1093/aje/kwr245.
    1. Bedford T, Riley S, Barr IG, Broor S, Chadha M, Cox NJ, Daniels RS, Gunasekaran CP, Hurt AC, Kelso A, Klimov A, Lewis NS, Li X, McCauley JW, Odagiri T, Potdar V, Rambaut A, Shu Y, Skepner E, Smith DJ, Suchard MA, Tashiro M, Wang D, Xu X, Lemey P, Russell CA. 2015. Global circulation patterns of seasonal influenza viruses vary with antigenic drift. Nature 523:217–220. doi:10.1038/nature14460.
    1. Halloran ME, Longini IM. 2006. Public health. Community studies for vaccinating schoolchildren against influenza. Science 311:615–616. doi:10.1126/science.1122143.
    1. Longini IM. 2012. A theoretic framework to consider the effect of immunizing schoolchildren against influenza: implications for research. Pediatrics 129(Suppl 2):S63–S67. doi:10.1542/peds.2011-0737D.
    1. Magadán JG, Khurana S, Das SR, Frank GM, Stevens J, Golding H, Bennink JR, Yewdell JW. 2013. Influenza A virus hemagglutinin trimerization completes monomer folding and antigenicity. J Virol 87:9742–9753. doi:10.1128/JVI.00471-13.
    1. Chen J-R, Yu Y-H, Tseng Y-C, Chiang W-L, Chiang M-F, Ko Y-A, Chiu Y-K, Ma H-H, Wu C-Y, Jan J-T, Lin K-I, Ma C, Wong C-H. 2014. Vaccination of monoglycosylated hemagglutinin induces cross-strain protection against influenza virus infections. Proc Natl Acad Sci U S A 111:2476–2481. doi:10.1073/pnas.1323954111.
    1. Wang C-C, Chen J-R, Tseng Y-C, Hsu C-H, Hung Y-F, Chen S-W, Chen C-M, Khoo K-H, Cheng T-J, Cheng Y-SE, Jan J-T, Wu C-Y, Ma C, Wong C-H. 2009. Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci U S A 106:18137–18142. doi:10.1073/pnas.0909696106.
    1. Krammer F, Palese P. 2013. Influenza virus hemagglutinin stalk-based antibodies and vaccines. Curr Opin Virol 3:521–530. doi:10.1016/j.coviro.2013.07.007.
    1. Krammer F, Palese P. 2014. Universal influenza virus vaccines: need for clinical trials. Nat Immunol 15:3–5. doi:10.1038/ni.2761.
    1. Krammer F, Margine I, Tan GS, Pica N, Krause JC, Palese P. 2012. A carboxy-terminal trimerization domain stabilizes conformational epitopes on the stalk domain of soluble recombinant hemagglutinin substrates. PLoS One 7:e43603. doi:10.1371/journal.pone.0043603.
    1. Margine I, Palese P, Krammer F. 2013. Expression of functional recombinant hemagglutinin and neuraminidase proteins from the novel H7N9 influenza virus using the baculovirus expression system. J Vis Exp 81:e51112. doi:10.3791/51112.
    1. King JC, Cox MM, Reisinger K, Hedrick J, Graham I, Patriarca P. 2009. Evaluation of the safety, reactogenicity and immunogenicity of FluBlok trivalent recombinant baculovirus-expressed hemagglutinin influenza vaccine administered intramuscularly to healthy children aged 6–59 months. Vaccine 27:6589–6594. doi:10.1016/j.vaccine.2009.08.032.
    1. Treanor JJ, El Sahly H, King J, Graham I, Izikson R, Kohberger R, Patriarca P, Cox M. 2011. Protective efficacy of a trivalent recombinant hemagglutinin protein vaccine (FluBlok®) against influenza in healthy adults: a randomized, placebo-controlled trial. Vaccine 29:7733–7739.
    1. Keitel WA, Treanor JJ, El Sahly HM, Gilbert A, Meyer AL, Patriarca PA, Cox MM. 2009. Comparative immunogenicity of recombinant influenza hemagglutinin (rHA) and trivalent inactivated vaccine (TIV) among persons ≥65 years old. Vaccine 28:379–385. doi:10.1016/j.vaccine.2009.10.037.
    1. Heaton NS, Leyva-Grado VH, Tan GS, Eggink D, Hai R, Palese P. 2013. In vivo bioluminescent imaging of influenza A virus infection and characterization of novel cross-protective monoclonal antibodies. J Virol 87:8272–8281. doi:10.1128/JVI.00969-13.

Source: PubMed

3
Abonnieren