Study of inter- and intra-individual variations in the salivary microbiota

Vladimir Lazarevic, Katrine Whiteson, David Hernandez, Patrice François, Jacques Schrenzel, Vladimir Lazarevic, Katrine Whiteson, David Hernandez, Patrice François, Jacques Schrenzel

Abstract

Background: Oral bacterial communities contain species that promote health and others that have been implicated in oral and/or systemic diseases. Culture-independent approaches provide the best means to assess the diversity of oral bacteria because most of them remain uncultivable.

Results: The salivary microbiota from five adults was analyzed at three time-points by means of the 454 pyrosequencing technology. The V1-V3 region of the bacterial 16S rRNA genes was amplified by PCR using saliva lysates and broad-range primers. The bar-coded PCR products were pooled and sequenced unidirectionally to cover the V3 hypervariable region. Of 50,708 obtained sequences, 31,860 passed the quality control. Non-bacterial sequences (2.2%) were removed leaving 31,170 reads. Samples were dominated by seven major phyla: members of Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes and candidate division TM7 were identified in all samples; Fusobacteria and Spirochaetes were identified in all individuals, but not at all time-points. The dataset was represented by 3,011 distinct sequences (100%-ID phylotypes) of ~215 nucleotides and 583 phylotypes defined at ≥97% identity (97%-ID phylotypes). We compared saliva samples from different individuals in terms of the phylogeny of their microbial communities. Based on the presence and absence of phylotypes defined at 100% or 97% identity thresholds, samples from each subject formed separate clusters. Among individual taxa, phylum Bacteroidetes and order Clostridiales (Firmicutes) were the best indicators of intraindividual similarity of the salivary flora over time. Fifteen out of 81 genera constituted 73 to 94% of the total sequences present in different samples. Of these, 8 were shared by all time points of all individuals, while 15-25 genera were present in all three time-points of different individuals. Representatives of the class Sphingobacteria, order Sphingobacteriales and family Clostridiaceae were found only in one subject.

Conclusions: The salivary microbial community appeared to be stable over at least 5 days, allowing for subject-specific grouping using UniFrac. Inclusion of all available samples from more distant time points (up to 29 days) confirmed this observation. Samples taken at closer time intervals were not necessarily more similar than samples obtained across longer sampling times. These results point to the persistence of subject-specific taxa whose frequency fluctuates between the time points. Genus Gemella, identified in all time-points of all individuals, was not defined as a core-microbiome genus in previous studies of salivary bacterial communities. Human oral microbiome studies are still in their infancy and larger-scale projects are required to better define individual and universal oral microbiome core.

Figures

Figure 1
Figure 1
Proportion of taxonomic assignments under the phylum level. Bars represent the reads assigned to each of the four taxonomic levels for each major phylum. Their heights represent the percentage of reads that can be placed at a given level of taxonomy using the MG-RAST server. C, class; O, order; F, family; G, genus.
Figure 2
Figure 2
Relative abundance of predominant phyla across 15 microbiomes from 5 subjects. Bacterial phyla are indicated by the colour mode. Rare "cyanobacteria" identified in samples 1-5, 1-29 and 5-1 are not depicted. The rightmost column designated as "All" corresponds to the average of phyla frequency in individual samples. Sample numbers include subject ID, hyphen and the follow up time (days) after the first sampling time point (day 1).
Figure 3
Figure 3
Relative abundance of bacterial genera across samples. Rows 1 to 81 correspond to genera listed in Additional file 1, Supplementary Table 1. Each column represents one sample. The abundance (%) is indicated according to the scale at the bottom of the plot. The sequences assigned to genera cover 85-97% of total sequences in individual samples.
Figure 4
Figure 4
Number of phylotypes and genera as function of the total number of sequences. A. Rarefaction curves of individual samples. Curves were generated at the 97%-ID cutoff using RDP pyrosequencing pipeline [24]. The three samples from the same subject are represented by the same colour. B. Rarefaction curves of the pooled dataset. OTUs with ≥97%, ≥95% and ≥90% pairwise sequence identity generated using RDP pyrosequencing pipeline [24] are arbitrarily assumed to form the same species, genus and family respectively. C. Number of genera. Taxonomic composition was identified using MG-RAST. The three samples from the same subject are represented by symbols of the same colour.
Figure 5
Figure 5
Comparison of the salivary microbiotas. A. Hierarchical clustering trees were generated using unweighted UniFrac based on the presence or absence of all 3011 phylotypes (All) defined at 100% identity or subsets including indicated phylum or order Clostridiales. The trees based on 583 phylotypes defined at 97% identity and their derivatives obtained by the removal of hypervariable regions are designated All OTU003, and All OTU003-hv, respectively. Clusters formed by the three time points of the same subject are colour-shaded. PCoA analysis based on unweighted (B) or weighted (including abundance) UniFrac and 100%-ID phylotypes (C). Samples from the same subject are represented by the same colour.

References

    1. Faveri M, Mayer MP, Feres M, de Figueiredo LC, Dewhirst FE, Paster BJ. Microbiological diversity of generalized aggressive periodontitis by 16S rRNA clonal analysis. Oral Microbiol Immunol. 2008;23(2):112–118. doi: 10.1111/j.1399-302X.2007.00397.x.
    1. Colombo AP, Boches SK, Cotton SL, Goodson JM, Kent R, Haffajee AD, Socransky SS, Hasturk H, Van Dyke TE, Dewhirst F, Paster BJ. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J Periodontol. 2009;80(9):1421–1432. doi: 10.1902/jop.2009.090185.
    1. Siqueira JF Jr, Rocas IN. Diversity of endodontic microbiota revisited. J Dent Res. 2009;88(11):969–981. doi: 10.1177/0022034509346549.
    1. Dawes C. Estimates, from salivary analyses, of the turnover time of the oral mucosal epithelium in humans and the number of bacteria in an edentulous mouth. Arch Oral Biol. 2003;48(5):329–336. doi: 10.1016/S0003-9969(03)00014-1.
    1. Mager DL, Haffajee AD, Devlin PM, Norris CM, Posner MR, Goodson JM. The salivary microbiota as a diagnostic indicator of oral cancer: a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. J Transl Med. 2005;3:27. doi: 10.1186/1479-5876-3-27.
    1. Nasidze I, Li J, Quinque D, Tang K, Stoneking M. Global diversity in the human salivary microbiome. Genome Res. 2009;19(4):636–643. doi: 10.1101/gr.084616.108.
    1. Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000. 2006;42:80–87. doi: 10.1111/j.1600-0757.2006.00174.x.
    1. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 2004;428(6978):37–43. doi: 10.1038/nature02340.
    1. Keijser BJ, Zaura E, Huse SM, van der Vossen JM, Schuren FH, Montijn RC, ten Cate JM, Crielaard W. Pyrosequencing analysis of the oral microflora of healthy adults. J Dent Res. 2008;87(11):1016–1020. doi: 10.1177/154405910808701104.
    1. Lazarevic V, Whiteson K, Huse S, Hernandez D, Farinelli L, Osteras M, Schrenzel J, Francois P. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J Microbiol Methods. 2009;79(3):266–271. doi: 10.1016/j.mimet.2009.09.012.
    1. Zaura E, Keijser BJ, Huse SM, Crielaard W. Defining the healthy "core microbiome" of oral microbial communities. BMC Microbiol. 2009;9(1):259. doi: 10.1186/1471-2180-9-259.
    1. Meyer F, Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA. The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics. 2008;9:386. doi: 10.1186/1471-2105-9-386.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–5267. doi: 10.1128/AEM.00062-07.
    1. Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 2008;4(11):e1000255. doi: 10.1371/journal.pgen.1000255.
    1. Droege M, Hill B. The Genome Sequencer FLX System--longer reads, more applications, straight forward bioinformatics and more complete data sets. J Biotechnol. 2008;136(1-2):3–10. doi: 10.1016/j.jbiotec.2008.03.021.
    1. Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE. 2008;3(7):e2836. doi: 10.1371/journal.pone.0002836.
    1. Nasidze I, Quinque D, Li J, Li M, Tang K, Stoneking M. Comparative analysis of human saliva microbiome diversity by barcoded pyrosequencing and cloning approaches. Anal Biochem. 2009;391(1):64–68. doi: 10.1016/j.ab.2009.04.034.
    1. Huyghe A, Francois P, Charbonnier Y, Tangomo-Bento M, Bonetti EJ, Paster BJ, Bolivar I, Baratti-Mayer D, Pittet D, Schrenzel J. Novel microarray design strategy to study complex bacterial communities. Appl Environ Microbiol. 2008;74(6):1876–1885. doi: 10.1128/AEM.01722-07.
    1. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science. 2009;326(5960):1694–1697. doi: 10.1126/science.1177486.
    1. Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, Head IM, Read LF, Sloan WT. Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods. 2009;6(9):639–641. doi: 10.1038/nmeth.1361.
    1. Claesson MJ, O'Sullivan O, Wang Q, Nikkila J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O'Toole PW. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One. 2009;4(8):e6669. doi: 10.1371/journal.pone.0006669.
    1. Lozupone C, Hamady M, Knight R. UniFrac-an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics. 2006;7:371. doi: 10.1186/1471-2105-7-371.
    1. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today. 2006;33:152–155.
    1. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009. pp. D141–145.
    1. Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut. 2008;57(11):1605–1615. doi: 10.1136/gut.2007.133603.
    1. Galand PE, Casamayor EO, Kirchman DL, Lovejoy C. Ecology of the rare microbial biosphere of the Arctic Ocean. Proc Natl Acad Sci USA. 2009;106(52):22427–22432. doi: 10.1073/pnas.0908284106.
    1. Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R. Forensic identification using skin bacterial communities. Proc Natl Acad Sci USA. pp. 6477–6481.
    1. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P. Wrinkles in the rare biosphere: pyrosequencing errors lead to artificial inflation of diversity estimates. Environ Microbiol. 2010;12(1):118–123. doi: 10.1111/j.1462-2920.2009.02051.x.
    1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721–5732. doi: 10.1128/JCM.43.11.5721-5732.2005.
    1. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–3066. doi: 10.1093/nar/gkf436.
    1. Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R. Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods. 2008;5(3):235–237. doi: 10.1038/nmeth.1184.
    1. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. doi: 10.1093/nar/gkh340.
    1. Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics. pp. 680–682.
    1. Price MN, Dehal PS, Arkin AP. FastTree 2--approximately maximum-likelihood trees for large alignments. PLoS One. p. e9490.
    1. Nawrocki EP, Eddy SR. Query-dependent banding (QDB) for faster RNA similarity searches. PLoS Comput Biol. 2007;3(3):e56. doi: 10.1371/journal.pcbi.0030056.

Source: PubMed

3
Abonnieren