Neuroimaging and Neuropsychological Outcomes Following Clinician-Delivered Cognitive Training for Six Patients With Mild Brain Injury: A Multiple Case Study

Amy Lawson Moore, Dick M Carpenter 2nd, Randolph L James, Terissa Michele Miller, Jeffrey J Moore, Elizabeth A Disbrow, Christina R Ledbetter, Amy Lawson Moore, Dick M Carpenter 2nd, Randolph L James, Terissa Michele Miller, Jeffrey J Moore, Elizabeth A Disbrow, Christina R Ledbetter

Abstract

Nearly half of all mild brain injury sufferers experience long-term cognitive impairment, so an important goal in rehabilitation is to address their multiple cognitive deficits to help them return to prior levels of functioning. Cognitive training, or the use of repeated mental exercises to enhance cognition, is one remediation method for brain injury. The primary purpose of this hypothesis-generating pilot study was to explore the statistical and clinical significance of cognitive changes and transfer of training to real-life functioning following 60 h of Brain Booster, a clinician-delivered cognitive training program, for six patients with mild traumatic brain injury (TBI) or non-traumatic acquired brain injury (ABI). The secondary purpose was to explore changes in functional connectivity and neural correlates of cognitive test gains following the training. We used a multiple case study design to document significant changes in cognitive test scores, overall IQ score, and symptom ratings; and we used magnetic resonance imaging (MRI) to explore trends in functional network connectivity and neural correlates of cognitive change. All cognitive test scores showed improvement with statistically significant changes on five of the seven measures (long-term memory, processing speed, reasoning, auditory processing, and overall IQ score). The mean change in IQ score was 20 points, from a mean of 108 to a mean of 128. Five themes emerged from the qualitative data analysis including improvements in cognition, mood, social identity, performance, and Instrumental Activities of Daily Living (IADLs). With MRI, we documented significant region-to-region changes in connectivity following cognitive training including those involving the cerebellum and cerebellar networks. We also found significant correlations between changes in IQ score and change in white matter integrity of bilateral corticospinal tracts (CST) and the left uncinate fasciculus. This study adds to the growing body of literature examining the effects of cognitive training for mild TBI and ABI, and to the collection of research on the benefits of cognitive training in general. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02918994.

Keywords: LearningRx; MRI; brain injury; brain training; cognitive rehabilitation; cognitive training; concussion; mild TBI.

Copyright © 2020 Moore, Carpenter, James, Miller, Moore, Disbrow and Ledbetter.

Figures

FIGURE 1
FIGURE 1
Example of a training task.
FIGURE 2
FIGURE 2
Pre- and post-percentiles on the Woodcock Johnson IV.
FIGURE 3
FIGURE 3
Connectome map of changes in resting state connectivity after training, ROI-to-ROI analysis. SMA, supplementary motor area; ICC, intracalcarine cortex; PostCG, post-central gyrus; toITG, inferior temporal gyrus, temporooccipital part; TP, temporal pole; IFG tri, inferior frontal gyrus, pars triangularis; Ver8, vermis Lobe 8; Cereb9, cerebellum lobe 9; Cereb2, cerebellum lobe VIIA, crus 2; Cereb1, cerebellum lobe VIIA, crus 1; PO, parietal operculum; r, right; l, left.

References

    1. American Congress of Rehabilitation Medicine (1993). Definition of mild traumatic brain injury. J. Head Trauma Rehabil. 8 86–87.
    1. Bandura A. (1994). “Self-efficacy,” in Encyclopedia of Human Behavior, Vol. 4 ed. Ramachaudran V. S. (New York, NY: Academic Press; ), 71–81.
    1. Barquero L. A., Davis N., Cutting L. E. (2014). Neuroimaging of reading intervention: a systematic review and activation likelihood estimate meta-analysis. PLoS One 9:e83668. 10.1371/journal.pone.0083668
    1. Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statis. Soc. Series B 57 289–300. 10.1111/j.2517-6161.1995.tb02031.x
    1. Bezzola L., Merillat S., Jäncke L. (2012). The effect of leisure activity gold practice on motor imagery: an fMRI study in middle adulthood. Front. Hum. Neurosci. 6:779. 10.3389/fnhum.2013.00779
    1. Braeckman K., Descamps B., Vanhove C., Caeyenberghs K. (2019). Exploratory relationships between cognitive improvements and training induced plasticity in hippocampus and cingulum in a rat model of mild traumatic brain injury: a diffusion MRI study. Brain Imaging and Behavior 10.1007/s11682-019-00179-4 [Epub ahead of print].
    1. Buonomano D. V., Merzenich M. M. (1998). Cortical plasticity: from synapses to maps. Ann. Rev. Neurosci. 21 149–186. 10.1146/annurev.neuro.21.1.149
    1. Carpenter D., Ledbetter C., Moore A. L. (2016). LearningRx cognitive training effects in children ages 8-14: a randomized controlled study. Appl. Cogn. Psychol. 30 815–826. 10.1002/acp.3257
    1. Catharine V. L., Helena V., Ellen D., Guy V., Karel D., Karen C. (2019). Exploration of gray matter correlates of cognitive training benefit in adolescents with chronic traumatic brain injury. Neuroimage 23 101827. 10.1016/j.nicl.2019.101827
    1. Centers for Disease Control and Prevention (2015). Report to congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation. Atlanta, GA: National Center for Injury Prevention and Control.
    1. Chattopadhyay S., Tait R., Simas T., van Nieuwenhuizen A., Hagan C. C., Holt R. J., et al. (2017). Cognitive behavioral therapy lowers elevated functional connectivity in depressed adolescents. EBioMedicine 17 216–222. 10.1016/j.ebiom.2017.02.010
    1. Chepenik L., Cornew L., Farrah M. (2007). The influence of sad mood on cognition. Emotion 7 802–811. 10.1037/1528-3542.7.4.802
    1. Cicerone K. D., Goldin Y., Ganci K., Rosenbaum A., Wethe J. V., Langenbahn D. M., et al. (2019). Evidence-based cognitive rehabilitation: Systematic review of the literature from 2009 through 2014. Arch. Phys. Med. Rehabil. 100 1515–1533. 10.1016/j.apmr.2019.02.011
    1. Croall I. D., Cowie C. J., He J., Peel A., Wood J., Aribisala B. S., et al. (2014). White matter correlates of cognitive dysfunction after mild traumatic brain injury. Neurology 83 494–501. 10.1212/WNL.0000000000000666
    1. Deng L., Cheng Y., Cao X., Feng W., Zhu H., Jiang L., et al. (2019). The effect of cognitive training on the brain’s local connectivity organization in healthy older adults. Sci. Rep. 9:9033. 10.1038/s41598-019-45463-x
    1. Ernst A., Frisén J. (2015). Adult neurogenesis in humans- common and unique traits in mammals. PLoS Biol. 13:e1002045. 10.1371/journal.pbio.1002045
    1. Finc K., Bonna K., He X., Lydon-Staley D. M., Kuhn S., Duch W., et al. (2019). Dynamic reconfiguration of functional brain networks during working memory training. BioRxiv. 10.1101/685487
    1. Floyer-Lea A., Matthews P. M. (2005). Distinguishable brain activation networks for short- and long-term motor skill learning. J. Neurophysiol. 94 512–518. 10.1152/jn.00717.2004
    1. Gibson K., Hanson K., Mitchell T., Tenpas D. (2013). Brain Booster Workbook. Colorado Springs, CO: LearningRx.
    1. Hallock H., Collins D., Lampit A., Deol K., Fleming J., Valenzuela M. (2016). Cognitive training for post-acute traumatic brain injury: a systematic review and meta-analysis. Front. Neurosci. 10:537. 10.3389/fnhum.2016.00537
    1. Han K., Chapman S. B., Krawczyk D. C. (2016). Disrupted intrinsic connectivity among default, dorsal attention, and frontoparietal control networks in individuals with chronic traumatic brain injury. J. Int. Neuropsychol. Soc. 22 263–279. 10.1017/S1355617715001393
    1. Han K., Chapman S. B., Krawczyk D. C. (2018a). Neuroplasticity of cognitive control networks following cognitive training for chronic traumatic brain injury. NeuroImage 18 262–278. 10.1016/j.nicl.2018.01.030
    1. Han K., Chapman S. B., Krawczyk D. C. (2020). Cognitive training reorganizes network modularity in traumatic brain injury. Neurorehabil. Neural Repair 34 26–38. 10.1177/1545968319868710
    1. Han K., Davis R. A., Chapman S. B., Krawczyk D. C. (2017). Strategy-based reasoning training modulates cortical thickness and resting-state functional connectivity in adults with chronic traumatic brain injury. Brain Behav. 7:e00687. 10.1002/brb3.687
    1. Han K., Martinez D., Chapman S. B., Krawczyk D. C. (2018b). Neural correlates of reduced depressive symptoms following cognitive training for chronic traumatic brain injury. Hum. Brain Mapp. 39 2955–2971. 10.1002/hbm.24052
    1. Holleran L., Kelly S., Alloza C., Agartz I., Andreassen O., Arango C., et al. (2020). The relationship between white matter microstructure and general cognitive ability in patients with schizophrenia and healthy participants in the ENIGMA consortium. Am. J. Psychiatry 177 537–547. 10.1176/appi.ajp.2019.19030225
    1. Houghton C., Casey D., Shaw D., Murphy K. (2013). Rigour in qualitative case-study research. Nurse Res. 20 12–17. 10.7748/nr2013.03.20.4.12.e326
    1. Huang J. C. (2009). Neuroplasticity as a proposed mechanism for the efficacy of optometric vision therapy and rehabilitation. J. Behav. Optom. 20 95–99.
    1. Hurtubise J., Gorbet D., Hynes L., Macpherson A., Sergio L. (2020). White matter integrity and its relationship to cognitive-motor integration in females with and without post-concussion syndrome. J. Neurotr. 10.1089/neu.2019.6765 [Epub ahead of print].
    1. Iaccarino M. A., Bhatnagar S., Zafonte R. (2015). Rehabilitation after traumatic brain injury. Handbook Clin. Neurol. 127 411–422. 10.1016/B978-0-444-52892-6.00026-X
    1. Imfeld A., Oechslin M. S., Meyer M., Loenneker T., Jäncke L. (2009). White matter plasticity in the corticospinal tract of musicians: A diffusion tensor imaging study. Neuroimage 46 600–607. 10.1016/j.neuroimage.2009.02.025
    1. Jacobson N. S., Truax P. (1991). Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. J. Consult. Clin. Psychol. 59 12–19. 10.1037/0022-006x.59.1.12
    1. James R., Moore A. L., Carpenter D., Miller T., Ledbetter C. (2019). Feasibility of a functional medicine approach to slowing clinical cognitive decline in patients over age 55: a multiple case study report. OBM Integr. Complement. Med. 4:34 10.21926/obm.icm.1903054
    1. Jolles D. D., van Buchem M. A., Crone E. A., Rombouts S. A. (2011). Functional brain connectivity at rest changes after working memory training. Hum. Brain Mapp. 34 396–406. 10.1002/hbm.21444
    1. Kim E., Seo H. G., Lee H. H., Lee S. H., Choi S. H., Cho W. S., et al. (2019). Altered white matter integrity after mild to moderate traumatic brain injury. J. Clin. Med. 8:1318. 10.3390/jcm8091318
    1. Klingberg T. (2010). Training and plasticity of working memory. Trends Cogn. Sci. 14 317–324. 10.1016/j.tics.2010.05.002
    1. Kolakowsky-Hayner S. (2010). The patient competency rating scale. Center Outcome Meas. Brain Injury. Available online at:
    1. Kuiper J. S., Zuidersma M., Zuidema S. U., Burgerhof J. G., Stolk R. P., Voshaar R. C., et al. (2016). Social relationships and cognitive decline: a systematic review and meta-analysis of longitudinal cohort studies. Int. J. Epidemiol. 45 1169–1206. 10.1093/ije/dyw089
    1. Leaver A. M., Espinoza R., Joshi S. H., Vasavada M., Njau S., Woods R. P., et al. (2016). Desynchronization and plasticity of striato−frontal connectivity in major depressive disorder. Cerebral Cortex 26 4337–4346. 10.1093/cercor/bhv207
    1. Ledbetter C., Faison M. O., Patterson J. (2016). Correlation of cognitive training gains and resting state functional connectivity. Paper Presented at the Society for Neuroscience, San Diego, CA.
    1. Ledbetter C., Moore A. L., Mitchell T. (2017). Cognitive effects of ThinkRx cognitive rehabilitation training for eleven soldiers with brain injury: a retrospective chart review. Front. Psychol. 8:825. 10.3389/fpsyg.2017.00825
    1. Liu L. (2016). Using generic inductive approach in qualitative educational research: a case study analysis. J. Educ. Lear. 5 129–135. 10.5539/jel.v5n2p129
    1. McInnes K., Friesen C. L., MacKenzie D. E., Westwood D. A., Boe S. G. (2017). Mild traumatic brain injury (mTBI) and chronic cognitive impairment: a scoping review. PLoS One 12:e0174847. 10.1371/journal.pone.0174847
    1. Mills A. J., Durepos G., Wiebe E. (2010). Encyclopedia of Case Study Research, Vol. 1-0 Thousand Oaks, CA: SAGE Publications, Inc; 10.4135/9781412957397
    1. Moore A. L., Carpenter D. M., Ledbetter C., Miller T. M. (2018). Clinician-delivered cognitive training for children with attention problems: transfer effects on cognitive and behavior from the ThinkRx randomized controlled trial. Neuropsy. Dis. Treat. 14 1671–1683. 10.2147/NDT.S165418
    1. Moore A. L., Carpenter D. M., Miller T. M., Ledbetter C. (2019). ThinkRx cognitive training for adults over age 50: clinician-caregiver partners in delivery as effective as clinician-only delivery. Psychol. Neurosci. 12 291–306. 10.1037/pne0000162
    1. Morikawa M., Kiuchi K., Taoka T., Nagauchi K., Kichikawa K., Kishimoto T. (2010). Uncinate fasciculus-correlated cognition in Alzheimer’s disease: a diffusion tensor imaging study by tractography. Psychogeriatrics 10 15–20. 10.1111/j.1479-8301.2010.00312.x
    1. Nieto-Castanon A. (2020). Handbook of fMRI Methods in CONN. Boston, MA: Hilbert Press.
    1. Niogi S., Mukherjee S., Ghajar J., Johnson C., Kolster R., Lee H., et al. (2008). Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain 131 3209–3221. 10.1093/brain/awn247
    1. Pardini M., Elia M., Garaci F. G., Guida S., Coniglione F., Krueger F., et al. (2012). Long-term cognitive and behavioral therapies, combined with augmentative communication, are related to uncinate fasciculus integrity in autism. J. Aut. Dev. Disord. 42 585–592. 10.1007/s10803-011-1281-2
    1. Phillips N. L., Mandalis A., Benson S., Parry L., Epps A., Morrow A., et al. (2016). Computerized working memory training for children with moderate to severe traumatic brain injury: a double-blind, randomized, placebo-controlled trial. J. Neurotr. 33 2097–2104. 10.1089/neu.2015.4358
    1. Ragnarsson K. T., Clarke W. R., Daling J. R., Garber S. L., Gustafson C. F., Holland A. L., et al. (1999). Rehabilitation of persons with traumatic brain injury. J. Am. Med. Assoc. 282 974–983. 10.1001/jama.282.10.974
    1. Reuter M., Schmansky N. J., Rosas H. D., Fischl B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage 61 1402–1418. 10.1016/j.neuroimage.2012.02.084
    1. Schmahmann J. D. (2004). Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. Neuropsy. Pract. Opin. 16 367–378. 10.1176/jnp.16.3.367
    1. Schrank F. A., McGrew K. S., Mather N. (2014). Woodcock-johnson IV tests of cognitive abilities. Rolling Meadows, IL: Riverside.
    1. Schwartz J., Begley S. (2003). The Mind And The Brain: Neuroplasticity And The Power Of Mental Force. New York, NY: Harper Collins.
    1. Seguin M., Lehaie A., Matte-Gagne C., Beauchamp M. H. (2018). Ready! Set? Let’s Train!: Feasibility of an intensive attention training program and its beneficial effect after childhood traumatic brain injury. Ann. Phys. Rehabil. Med. 61 189–196. 10.1016/j.rehab.2017.05.001
    1. Sharma B., Tomaszczyk J. C., Dawson D., Turner G. R., Colella B., Green R. E. (2017). Feasibility of online self-administered cognitive training in moderate-severe brain injury. Disab. Rehabili. 39 1380–1390. 10.1080/09638288.2016.1195453
    1. Sharp D. J., Beckmann C. F., Greenwood R., Kinnunen K. M., Bonnelle V., De Boissezon X., et al. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain 134(Pt 8) 2233–2247. 10.1093/brain/awr175
    1. Sharp D. J., Scott G., Leech R. (2014). Network dysfunction after traumatic brain injury. Nat. Rev. Neurol. 10 156–166. 10.1038/nrneurol.2014.15
    1. Sorrells S., Paredes M., Cebrian-Silla A., Alvarez-Buylla A. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555 377–381. 10.1038/nature25975
    1. Stoodley C. J., Schmahmann J. D. (2009). Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage 44 489–501. 10.1016/j.neuroimage.2008.08.039
    1. Takeuchi H., Taki Y., Nouchi R., Hashizume H., Sekiguchi A., Kotozaki Y., et al. (2013). Effects of multitasking-training on gray matter structure and resting state neural mechanisms. Hum. Brain Mapp. 35 3646–3660. 10.1002/hbm.22427
    1. Tetnowski J. (2015). Qualitative case study research design. Perspect. Fluency Fluency Disord. 25 39–45. 10.1044/ffd25.1.39
    1. Tsaousides T., Gordon W. A. (2009). Cognitive rehabilitation following traumatic brain injury: assessment to treatment. Mount Sinai J. Med. 76 173–181. 10.1002/msj.20099
    1. Von Der Heide R. J., Skipper L. M., Klobusicky E., Olson I. R. (2013). Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain 136 1692–1707. 10.1093/brain/awt094
    1. Watson C., Stopp C., Wypij D., Bellinger D., Newburger J., Rivkin M. (2018). Altered white matter microstructure correlates with IQ and processing speed in children and adolescents post-fontan. J. Pediatr. 200 140–149. 10.1016/j.jpeds.2018.04.022
    1. Whitfield-Gabrieli S., Nieto-Castanon A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2 125–141. 10.1089/brain.2012.0073
    1. Yendiki A., Panneck P., Srinivasan P., Stevens A., Zöllei L., Augustinack J., et al. (2011). Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Front. Neuroinformatics 5:23. 10.3389/fninf.2011.00023
    1. Yendiki A., Reuter M., Wilkens P., Rosas H. D., Fischl B. (2016). Joint reconstruction of white-matter pathways from longitudinal diffusion MRI data with anatomical priors. NeuroImage 127 277–286. 10.1016/j.neuroimage.2015.12.003
    1. Yin R. K. (2014). Case Study Research and Applications: Design and Methods, 6th Edn Thousand Oaks, CA: SAGE Publications.

Source: PubMed

3
Abonnieren