Gut Microbiota and Brain Function: An Evolving Field in Neuroscience

Jane A Foster, Mark Lyte, Emeran Meyer, John F Cryan, Jane A Foster, Mark Lyte, Emeran Meyer, John F Cryan

Abstract

There is a growing appreciation of the importance of gut microbiota to health and disease. This has been driven by advances in sequencing technology and recent findings demonstrating the important role of microbiota in common health disorders such as obesity. Moreover, the potential role of gut microbiota in influencing brain function, behavior, and mental health has attracted the attention of neuroscientists and psychiatrists. At the 29(th) International College of Neuropsychopharmacology (CINP) World Congress held in Vancouver, Canada, in June 2014, a group of experts presented the symposium, "Gut microbiota and brain function: Relevance to psychiatric disorders" to review the latest findings in how gut microbiota may play a role in brain function, behavior, and disease. The symposium covered a broad range of topics, including gut microbiota and neuroendocrine function, the influence of gut microbiota on behavior, probiotics as regulators of brain and behavior, and imaging the gut-brain axis in humans. This report provides an overview of these presentations.

Keywords: Behavior; MRI; brain imaging; immune; neuroendocrine; probiotic.

© The Author 2015. Published by Oxford University Press on behalf of CINP.

References

    1. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, Koga Y, Sudo N. (2012) Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol 303:G1288–1295.
    1. Bach-Mizrachi H, Underwood MD, Kassir SA, Bakalian MJ, Sibille E, Tamir H, Mann JJ, Arango V. (2006) Neuronal tryptophan hydroxylase mRNA expression in the human dorsal and median raphe nuclei: major depression and suicide. Neuropsychopharmacology 31:814–824.
    1. Bajaj JS, Hylemon PB, Ridlon JM, Heuman DM, Daita K, White MB, Monteith P, Noble NA, Sikaroodi M, Gillevet PM. (2012) Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol 303:G675–685.
    1. Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, Malinowski P, Jackson W, Blennerhassett P, Neufeld KA, Lu J, Khan WI, Corthesy-Theulaz I, Cherbut C, Bergonzelli GE, Collins SM. (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139:2102–2112.
    1. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, Verdu EF, Collins SM. (2011a) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141:599–609.
    1. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli GE, Collins SM, Verdu EF. (2011b) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23:1132–1139.
    1. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108:16050–16055.
    1. Burokas A, Moloney RD, Dinan TG, Cryan JF. (2015) Microbiota regulation of the Mammalian gut-brain axis. Adv Appl Microbiol 91:1–62.
    1. Chun JJ, Schatz DG, Oettinger MA, Jaenisch R, Baltimore D. (1991) The recombination activating gene-1 (RAG-1) transcript is present in the murine central nervous system. Cell 64:189–200.
    1. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF. (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673.
    1. Collins SM, Kassam Z, Bercik P. (2013) The adoptive transfer of behavioral phenotype via the intestinal microbiota: experimental evidence and clinical implications. Curr Opin Microbiol 16:240–245.
    1. Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Dauge V, Naudon L, Rabot S. (2014) Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42:207–217.
    1. Cryan JF, Dinan TG. (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and Behavior. Nat Rev Neurosci 13:701–712.
    1. Cushman J, Lo J, Huang Z, Wasserfall C, Petitto JM. (2003) Neurobehavioral changes resulting from recombinase activation gene 1 deletion. Clin Diagn Lab Immunol 10:13–18.
    1. Da Silva JA. (1999) Sex hormones and glucocorticoids: interactions with the immune system. Ann NY Acad Sci 876:102–117; discussion 117-108.
    1. De Leon-Nava MA, Nava K, Soldevila G, Lopez-Griego L, Chavez-Rios JR, Vargas-Villavicencio JA, Morales-Montor J. (2009) Immune sexual dimorphism: effect of gonadal steroids on the expression of cytokines, sex steroid receptors, and lymphocyte proliferation. J Steroid Biochem Mol Biol 113:57–64.
    1. Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. (2008) The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res 43:164–174.
    1. Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. (2010) Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience 170:1179–1188.
    1. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. (2013) Microbiota is essential for social development in the mouse. Mol Psychiatry 19:146–148.
    1. Dinan TG, Stanton C, Cryan JF. (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74:720–726.
    1. Dinan TG, Borre YE, Cryan JF. (2014) Genomics of schizophrenia: time to consider the gut microbiome? Mol Psychiatry 19:1252–1257.
    1. Douglas-Escobar M, Elliott E, Neu J. (2013) Effect of intestinal microbial ecology on the developing brain. JAMA Pediatr 167:374–379.
    1. Fond G, Boukouaci W, Chevalier G, Regnault A, Eberl G, Hamdani N, Dickerson F, Macgregor A, Boyer L, Dargel A, Oliveira J, Tamouza R, Leboyer M. (2015) The “psychomicrobiotic”: Targeting microbiota in major psychiatric disorders: a systematic review. Pathol Biol (Paris) 63:35–42.
    1. Foster JA, McVey Neufeld KA. (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312.
    1. Goehler LE, Gaykema RP, Opitz N, Reddaway R, Badr N, Lyte M. (2005) Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav Immun 19:334–344.
    1. Gustafsson B, Kahlson G, Rosengren E. (1957) Biogenesis of histamine studied by its distribution and urinary excretion in germ free reared and not germ free rats fed a histamine free diet. Acta Physiol Scand 41:217–228.
    1. Gustafsson BE. (1959) Lightweight stainless steel systems for rearing germfree animals. Ann NY Acad Sci 78:17–28.
    1. Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S. (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 108:3047–3052.
    1. Holzer P, Farzi A. (2014) Neuropeptides and the microbiota-gut-brain axis. In: Microbial endocrinology: the microbiota-gut-brain axis in health and disease (Lyte M, Cryan JF, eds), pp. 195–220. New York: Springer-Verlag.
    1. Irimia A, Van Horn JD. (2013) The structural, connectomic and network covariance of the human brain. Neuroimage 66:489–499.
    1. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, Wang W, Tang W, Tan Z, Shi J, Li L, Ruan B. (2015) Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. doi:10.1016/j.bbi.2015.03.016.
    1. Ko CY, Lin HTV, Tsai GJ. (2013) Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochem 48:559–568.
    1. Leclercq S, Matamoros S, Cani PD, Neyrinck AM, Jamar F, Starkel P, Windey K, Tremaroli V, Backhed F, Verbeke K, de Timary P, Delzenne NM. (2014) Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci USA 111:E4485–4493.
    1. Lenard J. (1992) Mammalian hormones in microbial cells. Trends Biochem Sci 17:147–150.
    1. Lyte M. (2010) Microbial endocrinology: a personal journey. In: Microbial endocrinology: interkingdom signaling in infectious disease and health (Lyte M, Freestone PPE, eds), pp 1–16. New York: Springer.
    1. Lyte M. (2011) Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. Bioessays 33:574–581.
    1. Lyte M. (2013) Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLOS Pathog 9:e1003726.
    1. Lyte M. (2014a) Microbial endocrinology and the microbiota-gut-brain axis. Adv Exp Med Biol 817:3–24.
    1. Lyte M. (2014b) Microbial endocrinology: Host-microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes 5:381–389.
    1. Lyte M, Cryan JF. (2014a) Dealing with ability of the microbiota to influence the brain, and ultimately cognition and behavioral. Adv Exp Med Biol 817:ix-xi.
    1. Lyte M, Cryan JF. (2014b) Microbial endocrinology: the microbiota-gut-brain axis in health and disease. New York: Springer.
    1. Macpherson AJ, Harris NL. (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4:478–485.
    1. Mayer EA, Tillisch K. (2011) The brain-gut axis in abdominal pain syndromes. Annu Rev Med 62:381–396.
    1. Mayer EA, Savidge T, Shulman RJ. (2014) Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 146:1500–1512.
    1. Mayer EA, Tillisch K, Gupta A. (2015) Gut/brain axis and the microbiota. J Clin Invest 125:926–938.
    1. McKernan DP, Fitzgerald P, Dinan TG, Cryan JF. (2010) The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat. Neurogastroenterol Motil 22:1029–1035.
    1. McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD, Goodman AL, Henrissat B, Oozeer R, Cools-Portier S, Gobert G, Chervaux C, Knights D, Lozupone CA, Knight R, Duncan AE, Bain JR, Muehlbauer MJ, Newgard CB, Heath AC, Gordon JI. (2011) The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med 3:106ra106.
    1. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson JF, Rougeot C, Pichelin M, Cazaubiel M, Cazaubiel JM. (2011a) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105:755–764.
    1. Messaoudi M, Violle N, Bisson JF, Desor D, Javelot H, Rougeot C. (2011b) Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2:256–261.
    1. Mohammadi AA, Jazayeri S, Khosravi-Darani K, Solati Z, Mohammadpour N, Asemi Z, Adab Z, Djalali M, Tehrani-Doost M, Hosseini M, Eghtesadi S. (2015) The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr Neurosci. Epub 16 Apr 2015.
    1. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE. (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68:869–877.
    1. Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linlokken A, Wilson R, Rudi K. (2014) Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 26:1155–1162.
    1. Nemani K, Hosseini Ghomi R, McCormick B, Fan X. (2015) Schizophrenia and the gut-brain axis. Prog Neuropsychopharmacol Biol Psychiatry 56:155–160.
    1. Neufeld KA, Kang N, Bienenstock J, Foster JA. (2011a) Effects of intestinal microbiota on anxiety-like behavior. Commun Integr Biol 4:492–494.
    1. Neufeld KM, Kang N, Bienenstock J, Foster JA. (2011b) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23:255–264.
    1. Nishino R, Mikami K, Takahashi H, Tomonaga S, Furuse M, Hiramoto T, Aiba Y, Koga Y, Sudo N. (2013) Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol Motil 25:521–528.
    1. Rilett KC, Friedel M, Ellegood J, MacKenzie RN, Lerch JP, Foster JA. (2015) Loss of T cells influences sex differences in behavior and brain structure. Brain Behav Immun 46:249–260.
    1. Roshchina VV. (2010) Evolutionary considerations of neurotransmitters in microbial, plant and animal cells. In: Microbial endocrinology: interkingdom signaling in infectious disease and health (Lyte M, Freestone PP, eds), pp 17–52. New York: Springer.
    1. Sankar A, Mackenzie RN, Foster JA. (2012) Loss of class I MHC function alters behavior and stress reactivity. J Neuroimmunol 244:8–15.
    1. Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, Raza S, Weidler EM, Qin X, Coarfa C, Milosavljevic A, Petrosino JF, Highlander S, Gibbs R, Lynch SV, Shulman RJ, Versalovic J. (2011) Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 141:1782–1791.
    1. Savignac HM, Kiely B, Dinan TG, Cryan JF. (2014) Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil 26:1615–1627.
    1. Savignac HM, Tramullas M, Kiely B, Dinan TG, Cryan JF. (2015) Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav Brain Res 287:59–72.
    1. Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, Kaakkola S, Eerola-Rautio J, Pohja M, Kinnunen E, Murros K, Auvinen P. (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358.
    1. Steenbergen L, Sellaro R, van Hemert S, Bosch JA, Colzato LS. (2015) A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun 48:258–264.
    1. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, Kubo C, Koga Y. (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558:263–275.
    1. Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, Guyonnet D, Legrain-Raspaud S, Trotin B, Naliboff B, Mayer EA. (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144:1394–1401.
    1. Weinstein Y, Ran S, Segal S. (1984) Sex-associated differences in the regulation of immune responses controlled by the MHC of the mouse. J Immunol 132:656–661.
    1. Yau PL, Castro MG, Tagani A, Tsui WH, Convit A. (2012) Obesity and metabolic syndrome and functional and structural brain impairments in adolescence. Pediatr 130:e856–864.

Source: PubMed

3
Abonnieren