Supplement with whey protein hydrolysate in contrast to carbohydrate supports mitochondrial adaptations in trained runners

Mette Hansen, Mikkel Oxfeldt, Anne E Larsen, Lise S Thomsen, Torben Rokkedal-Lausch, Britt Christensen, Nikolaj Rittig, Frank V De Paoli, Jens Bangsbo, Niels Ørtenblad, Klavs Madsen, Mette Hansen, Mikkel Oxfeldt, Anne E Larsen, Lise S Thomsen, Torben Rokkedal-Lausch, Britt Christensen, Nikolaj Rittig, Frank V De Paoli, Jens Bangsbo, Niels Ørtenblad, Klavs Madsen

Abstract

Background: Protein supplementation has been suggested to augment endurance training adaptations by increasing mixed muscle and myofibrillar protein synthesis and lean body mass. However, a potential beneficial effect on mitochondrial adaptations is yet to be clarified. The aim of the present study was to investigate the effect of consuming whey protein hydrolysate before and whey protein hydrolysate plus carbohydrate (PRO-CHO) after each exercise session during a six-week training period compared to similarly timed intake of isocaloric CHO supplements on biomarkers of mitochondrial biogenesis, VO2max and performance in trained runners.

Methods: Twenty-four trained runners (VO2max 60.7 ± 3.7 ml O2 kg- 1 min1) completed a six-week block randomized controlled intervention period, consisting of progressive running training. Subjects were randomly assigned to either PRO-CHO or CHO and matched in pairs for gender, age, VO2max, training and performance status. The PRO-CHO group ingested a protein beverage (0.3 g kg- 1) before and protein-carbohydrate beverage (0.3 g protein kg- 1 and 1 g carbohydrate kg- 1) after each exercise session. The CHO group ingested an energy matched carbohydrate beverage. Resting muscle biopsies obtained pre and post intervention were analyzed for mitochondrial specific enzyme activity and mitochondrial protein content. Subjects completed a 6 K time trial (6 K TT) and a VO2max test pre, midway (only 6 K TT) and post intervention.

Results: Following six weeks of endurance training Cytochrome C (Cyt C) protein content was significantly higher in the PRO-CHO group compared to the CHO group (p < 0.05), with several other mitochondrial proteins (Succinate dehydrogenase (SDHA), Cytochrome C oxidase (COX-IV), Voltage-dependent anion channel (VDAC), Heat shock protein 60 (HSP60), and Prohibitin (PHB1)) following a similar, but non-significant pattern (p = 0.07-0.14). β-hydroxyacyl-CoA dehydrogenase (HAD) activity was significantly lower after training in the CHO group (p < 0.01), but not in the PRO-CHO group (p = 0.24). VO2max and 6 K TT was significantly improved after training with no significant difference between groups.

Conclusion: Intake of whey PRO hydrolysate before and whey PRO hydrolysate plus CHO after each exercise session during a six-week endurance training period may augment training effects on specific mitochondrial proteins compared to intake of iso-caloric CHO but does not alter VO2max or 6 K TT performance.

Trial registration: clinicaltrials.gov , NCT03561337 . Registered 6 June 2018 - Retrospectively registered.

Keywords: Endurance sport; Enzyme activity; Mitochondria; Performance; Protein hydrolysate; Skeletal muscle; Sports nutrition.

Conflict of interest statement

No competing interest.

Figures

Fig. 1
Fig. 1
Schematic overview of the study protocol
Fig. 2
Fig. 2
Western blot data for (a) Cytochrome C (Cyt C), (b) Voltage-dependent anion channel (VDAC), (c) Heat Shock Protein 60 (HSP60), (d) Prohibitin (PHB1), (e) Cytochrome C Oxidase (COX-IV), (f) Succinate dehydrogenase (SDHA), (g,h) Representative western blots. * significant difference from baseline p < 0.05. Data shown as median ± upper/lower quantile and minimum and maximum. (CHO n = 12, PRO-CHO n = 12)
Fig. 3
Fig. 3
(a) HAD and (b) CS enzyme (activity μmol g d.w.− 1 min− 1) at baseline and after six weeks of intervention in CHO (n = 12) and PRO-CHO (n = 12). ** significant difference from baseline p < 0.01. Data are presented as mean ± SEM
Fig. 4
Fig. 4
(a) 6 K Time Trial (PRO-CHO; CHO) at baseline (n = 22), midway (n = 21) and post the intervention period (n = 21). Data is missing from 1 matched pair (n = 2), due to improper execution of the test. Furthermore, one subject did not complete the Midway and Posttest due to small injury not affecting the training. (b) VO2max before (n = 24) and after intervention (n = 23). One subject is missing posttest due to lower back problems. Data are presented as mean ± SEM. *p < 0.05, **p < 0.01 ***p < 0.001 significant improvement from baseline

References

    1. Jeukendrup AE. Periodized nutrition for athletes. Sports Med. 2017;47(Suppl 1):51–63.
    1. Kerksick CM, Arent S, Schoenfeld BJ, Stout JR, Campbell B, Wilborn CD, et al. International society of sports nutrition position stand: nutrient timing. J Int Soc Sports Nutr. 2017;14:33.
    1. Knuiman P, Hopman MTE, Verbruggen C, Mensink M. Protein and the adaptive response with endurance training: wishful thinking or a competitive edge? Front Physiol. 2018;9:598.
    1. Egan B, Zierath JR. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17(2):162–184.
    1. Hansen M, Bangsbo J, Jensen J, Bibby BM, Madsen K. Effect of whey protein hydrolysate on performance and recovery of top-class orienteering runners. Int J Sport Nutr Exerc Metab. 2015;25(2):97–109.
    1. Kato H, Suzuki K, Bannai M, Moore DR. Protein requirements are elevated in endurance athletes after exercise as determined by the Indicator amino acid oxidation method. PLoS One. 2016;11(6):e0157406.
    1. Williamson E, Kato H, Volterman KA, Suzuki K, Moore DR. The effect of dietary protein on protein metabolism and performance in endurance-trained males. Med Sci Sports Exerc. 2019;51(2):352–360.
    1. Breen L, Philp A, Witard OC, Jackman SR, Selby A, Smith K, et al. The influence of carbohydrate-protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. J Physiol. 2011;589(Pt 16):4011–4025.
    1. Howarth KR, Moreau NA, Phillips SM, Gibala MJ. Coingestion of protein with carbohydrate during recovery from endurance exercise stimulates skeletal muscle protein synthesis in humans. J Appl Physiol. 2009;106(4):1394–1402.
    1. Churchward-Venne TA, Pinckaers PJM, Smeets JSJ, Betz MW, Senden JM, Goessens JPB, et al. Dose-response effects of dietary protein on muscle protein synthesis during recovery from endurance exercise in young men: a double-blind randomized trial. Am J Clin Nutr. 2020;00:1–15.
    1. Coffey VG, Moore DR, Burd NA, Rerecich T, Stellingwerff T, Garnham AP, et al. Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints. Eur J Appl Physiol. 2011;111(7):1473–1483.
    1. Di Donato DM, West DW, Churchward-Venne TA, Breen L, Baker SK, Phillips SM. Influence of aerobic exercise intensity on myofibrillar and mitochondrial protein synthesis in young men during early and late postexercise recovery. Am J Physiol Endocrinol Metab. 2014;306(9):E1025–E1032.
    1. Hill KM, Stathis CG, Grinfeld E, Hayes A, McAinch AJ. Co-ingestion of carbohydrate and whey protein isolates enhance PGC-1alpha mRNA expression: a randomised, single blind, cross over study. J Int Soc Sports Nutr. 2013;10(1):8.
    1. Jonvik KL, Paulussen KJM, Danen SL, Ceelen IJM, Horstman AM, Wardenaar FC, et al. Protein supplementation does not augment adaptations to endurance exercise training. Med Sci Sports Exerc. 2019;51(10):2041–2049.
    1. Knuiman P, van Loon LJC, Wouters J, Hopman M, Mensink M. Protein supplementation elicits greater gains in maximal oxygen uptake capacity and stimulates lean mass accretion during prolonged endurance training: a double-blind randomized controlled trial. Am J Clin Nutr. 2019;110(2):508–518.
    1. Roberson PA, Romero MA, Mumford PW, Osburn SC, Haun CT, Vann CG, et al. Protein supplementation throughout 10 weeks of progressive run training is not beneficial for time trial improvement. Front Nutr. 2018;5:97.
    1. Forbes SC, Bell GJ. Whey protein isolate supplementation while endurance training does not Alter cycling performance or immune responses at rest or after exercise. Front Nutr. 2019;6:19.
    1. Rodriguez NR, DiMarco NM, Langley S, American Dietetic A. Dietitians of C, American College of Sports Medicine N, et al. position of the American Dietetic association, dietitians of Canada, and the American College of Sports Medicine: nutrition and athletic performance. J Am Diet Assoc. 2009;109(3):509–527.
    1. Sylta O, Tønnessen E, Seiler S. From heart-rate data to training quantification: a comparison of 3 methods of training-intensity analysis. Int J Sports Physiol Perform. 2014;9(1):100–107.
    1. Ekblom-Bak E, Bjorkman F, Hellenius ML, Ekblom B. A new submaximal cycle ergometer test for prediction of VO2max. Scand J Med Sci Sports. 2014;24(2):319–326.
    1. Goldberg GR, Black AE, Jebb SA, Cole TJ, Murgatroyd PR, Coward WA, et al. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr. 1991;45(12):569–581.
    1. Nordic Council of M. 4 th Edition of the Nordic Nutrition Recommendations. Norden. 2004.
    1. Gejl KD, Hvid LG, Frandsen U, Jensen K, Sahlin K, Ortenblad N. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med Sci Sports Exerc. 2014;46(3):496–505.
    1. Hawley JA, Morton JP. Ramping up the signal: promoting endurance training adaptation in skeletal muscle by nutritional manipulation. Clin Exp Pharmacol Physiol. 2014;41(8):608–613.
    1. Impey SG, Smith D, Robinson AL, Owens DJ, Bartlett JD, Smith K, et al. Leucine-enriched protein feeding does not impair exercise-induced free fatty acid availability and lipid oxidation: beneficial implications for training in carbohydrate-restricted states. Amino Acids. 2015;47(2):407–416.
    1. Taylor C, Bartlett JD, van de Graaf CS, Louhelainen J, Coyne V, Iqbal Z, et al. Protein ingestion does not impair exercise-induced AMPK signalling when in a glycogen-depleted state: implications for train-low compete-high. Eur J Appl Physiol. 2013;113(6):1457–1468.
    1. Hulston CJ, Wolsk E, Grondahl TS, Yfanti C. G VANH. Protein intake does not increase vastus lateralis muscle protein synthesis during cycling. Med Sci Sports Exerc. 2011;43(9):1635–1642.
    1. Larsen MS, Holm L, Svart MV, Hjelholt AJ, Bengtsen MB, Dollerup OL, et al. Effects of protein intake prior to carbohydrate-restricted endurance exercise: a randomized crossover trial. J Int Soc Sports Nutr. 2020;17(1):7.
    1. Impey SG, Hearris MA, Hammond KM, Bartlett JD, Louis J, Close GL, et al. Fuel for the work required: a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Med. 2018;48(5):1031–1048.
    1. Akerstrom TC, Birk JB, Klein DK, Erikstrup C, Plomgaard P, Pedersen BK, et al. Oral glucose ingestion attenuates exercise-induced activation of 5′-AMP-activated protein kinase in human skeletal muscle. Biochem Biophys Res Commun. 2006;342(3):949–955.
    1. Civitarese AE, Hesselink MK, Russell AP, Ravussin E, Schrauwen P. Glucose ingestion during exercise blunts exercise-induced gene expression of skeletal muscle fat oxidative genes. Am J Physiol Endocrinol Metab. 2005;289(6):E1023–E1029.
    1. Yeo WK, Paton CD, Garnham AP, Burke LM, Carey AL, Hawley JA. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105(5):1462–1470.
    1. Hulston CJ, Venables MC, Mann CH, Martin C, Philp A, Baar K, et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sports Exerc. 2010;42(11):2046–2055.
    1. Achten J, Jeukendrup AE. Optimizing fat oxidation through exercise and diet. Nutrition. 2004;20(7–8):716–727.
    1. Helge JW, Watt PW, Richter EA, Rennie MJ, Kiens B. Fat utilization during exercise: adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans. J Physiol. 2001;537(Pt 3):1009–1020.
    1. Hansen AK, Fischer CP, Plomgaard P, Andersen JL, Saltin B, Pedersen BK, et al. J Appl Physiol. 2005;98(1):93–99.
    1. Van Proeyen K, Szlufcik K, Nielens H, Ramaekers M, Hespel P. Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J Appl Physiol. 2011;110(1):236–245.
    1. Nybo L, Pedersen K, Christensen B, Aagaard P, Brandt N, Kiens B. Impact of carbohydrate supplementation during endurance training on glycogen storage and performance. Acta Physiol (Oxf) 2009;197(2):117–127.
    1. Morton JP, Croft L, Bartlett JD, Maclaren DP, Reilly T, Evans L, et al. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J Appl Physiol. 2009;106(5):1513–1521.
    1. Bartlett JD, Hawley JA, Morton JP. Carbohydrate availability and exercise training adaptation: too much of a good thing? Eur J Sport Sci. 2015;15(1):3–12.
    1. Huecker M, Sarav M, Pearlman M, Laster J. Protein supplementation in sport: source, timing, and intended benefits. Curr Nutr Rep. 2019;8(4):382–396.
    1. Hansen M, Bangsbo J, Jensen J, Krause-Jensen M, Bibby BM, Sollie O, et al. Protein intake during training sessions has no effect on performance and recovery during a strenuous training camp for elite cyclists. J Int Soc Sports Nutr. 2016;13:9.
    1. Groennebaek T, Nielsen J, Jespersen NR, Botker HE, de Paoli FV, Miller BF, et al. Utilization of biomarkers as predictors of skeletal muscle mitochondrial content after physiological intervention and in clinical settings. Am J Physiol Endocrinol Metab. 2020;318(6):E886–E8E9.

Source: PubMed

3
Abonnieren