Reward During Arm Training Improves Impairment and Activity After Stroke: A Randomized Controlled Trial

Mario Widmer, Jeremia P O Held, Frieder Wittmann, Belen Valladares, Olivier Lambercy, Christian Sturzenegger, Antonella Palla, Kai Lutz, Andreas R Luft, Mario Widmer, Jeremia P O Held, Frieder Wittmann, Belen Valladares, Olivier Lambercy, Christian Sturzenegger, Antonella Palla, Kai Lutz, Andreas R Luft

Abstract

Background: Learning and learning-related neuroplasticity in motor cortex are potential mechanisms mediating recovery of movement abilities after stroke. These mechanisms depend on dopaminergic projections from midbrain that may encode reward information. Likewise, therapist experience confirms the role of feedback/reward for training efficacy after stroke.

Objective: To test the hypothesis that rehabilitative training can be enhanced by adding performance feedback and monetary rewards.

Methods: This multicentric, assessor-blinded, randomized controlled trial used the ArmeoSenso virtual reality rehabilitation system to train 37 first-ever subacute stroke patients in arm-reaching to moving targets. The rewarded group (n = 19) trained with performance feedback (gameplay) and contingent monetary reward. The control group (n = 18) used the same system without monetary reward and with graphically minimized performance feedback. Primary outcome was the change in the two-dimensional reaching space until the end of the intervention period. Secondary clinical assessments were performed at baseline, after 3 weeks of training (15 1-hour sessions), and at 3 month follow-up. Duration and intensity of the interventions as well as concomitant therapy were comparable between groups.

Results: The two-dimensional reaching space showed an overall improvement but no difference between groups. The rewarded group, however, showed significantly greater improvements from baseline in secondary outcomes assessing arm activity (Box and Block Test at post-training: 6.03±2.95, P = .046 and 3 months: 9.66±3.11, P = .003; Wolf Motor Function Test [Score] at 3 months: .63±.22, P = .007) and arm impairment (Fugl-Meyer Upper Extremity at 3 months: 8.22±3.11, P = .011).

Conclusions: Although neutral in its primary outcome, the trial signals a potential facilitating effect of reward on training-mediated improvement of arm paresis.

Trial registration: ClinicalTrials.gov (ID: NCT02257125).

Keywords: feedback; rehabilitation; reward; stroke; upper extremity; virtual reality.

Conflict of interest statement

Competing interests: Prof. Luft reports personal fees from Amgen, personal fees from Moleac, and personal fees from Bayer, outside the submitted work. The other authors have declared that no conflict of interest exists.

Figures

Figure 1.
Figure 1.
Participant flow through the study. Consolidated Standards of Reporting Trials (CONSORT) flow chart.
Figure 2.
Figure 2.
ArmeoSenso-Reward: Device and interventions. (A) Healthy subject using the ArmeoSenso training system. (B) Arm workspace assessment: Gray cubic voxels arranged in the transverse plane reflecting 10 cm × 10 cm active workspace relative to the patient’s trunk. (C) Rewarded training using the METEORS game: The hand of the virtual arm was used to catch the falling meteors before they crash onto the planet. If caught, the meteor exploded (visual and auditory feedback), and a score appeared (visual feedback). The earlier the meteor was caught, the higher was the produced score. If missed, the planet got damaged (note the impact crater (visual and auditory feedback)). Monetary rewards were given for each completed level. Patients could win up to 1 Swiss Franc (CHF), if they succeeded, but .1 CHF was deducted for every missed meteor. As a new level could be started approximately every 3 minutes, a maximum of 20 CHF (approx. 20 US-Dollars) could be won per training session in case of an uninterrupted winning streak. Summary statistics and monetary rewards were displayed visually after successfully completing a level. (D) Control game. The virtual hand was a green decagon that could be used to touch the pill-shaped, single-colored targets dropping in from the top of the screen, which then disappeared with a delay of 1 s without producing visual or sound effects and without producing a score. For more details, see Widmer et al.
Figure 3.
Figure 3.
ArmeoSenso integrated assessments and motivation. Results from the ArmeoSenso Workspace (primary outcome) and Pointing Task Assessment, as well as from the motivation questionnaire. These outcomes were assessed each day during the training period. Data is presented as mean and confidence interval.
Figure 4.
Figure 4.
Secondary clinical outcomes. Fugl-Meyer Assessment–Upper Extremity (FMA-UE), Wolf Motor Function Test (WMFT) and Box and Block Test showing significant between-group differences in change from baseline. Data is presented as mean and confidence interval.

References

    1. Parker V. M., Wade D. T., Hewer R. L.. Loss of arm function after stroke: measurement, frequency, and recovery. Int Rehabil Med. 1986;8(2):69-73.
    1. Kwakkel G., Kollen B. J., van der Grond J., Prevo A. J. H.. Probability of regaining dexterity in the flaccid upper limb. Stroke. 2003;34(9):2181-2186. doi:10.1161/.
    1. Nichols-Larsen D. S., Clark P. C., Zeringue A., Greenspan A., Blanton S.. Factors influencing stroke survivors' quality of life during subacute recovery. Stroke. 2005;36(7):1480-1484. doi:10.1161/01.STR.0000170706.13595.4f.
    1. Veerbeek J. M., Langbroek-Amersfoort A. C., van Wegen E. E. H., Meskers C. G. M., Kwakkel G.. Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair. 2017;31(2):107-121. doi:10.1177/1545968316666957.
    1. Krakauer J. W., Cortés J. C.. A non-task-oriented approach based on high-dose playful movement exploration for rehabilitation of the upper limb early after stroke: A proposal. NeuroRehabilitation. 2018;43(1):31-40. doi:10.3233/NRE-172411.
    1. Hosp J. A., Pekanovic A., Rioult-Pedotti M. S., Luft A. R.. Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J Neurosci. 2011;31(7):2481-2487. doi:10.1523/jneurosci.5411-10.2011.
    1. Hosp J. A., Molina-Luna K., Hertler B., Atiemo C. O., Luft A. R.. Dopaminergic modulation of motor maps in rat motor cortex: an in vivo study. Neuroscience. 2009;159(2):692-700. doi:10.1016/j.neuroscience.2008.12.056.
    1. Molina-Luna K., Pekanovic A., Röhrich S., et al.. Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. PLoS One. 2009;4(9):e7082. doi:10.1371/journal.pone.0007082.
    1. Leemburg S., Canonica T., Luft A.. Motor skill learning and reward consumption differentially affect VTA activation. Sci Rep. 2018;8(1):687. doi:10.1038/s41598-017-18716-w.
    1. Wachter T., Lungu O. V., Liu T., Willingham D. T., Ashe J.. Differential effect of reward and punishment on procedural learning. J Neurosci. Jan 14 2009;29(2):436-443. doi:10.1523/JNEUROSCI.4132-08.2009.
    1. Abe M., Schambra H., Wassermann E. M., Luckenbaugh D., Schweighofer N., Cohen L. G.. Reward improves long-term retention of a motor memory through induction of offline memory gains. Curr Biol. 2011;21(7):557-562. doi:10.1016/j.cub.2011.02.030.
    1. Widmer M, Ziegler N, Held J, Luft A, Lutz K. Rewarding feedback promotes motor skill consolidation via striatal activity. Prog Brain Res. 2016;229:303-323.
    1. Galea J. M., Mallia E., Rothwell J., Diedrichsen J.. The dissociable effects of punishment and reward on motor learning. Nat Neurosci. 2015;18(4):597-602. doi:10.1038/nn.3956.
    1. Knutson B, Delgado MR, Phillips PE. Representation of subjective value in the striatum. In: Glimcher P. W., Camerer C. F., Fehr E., et al., eds. Neuroeconomics: Decision Making and the Brain. Elsevier Academic Press; 2008:398-406.
    1. Lutz K., Pedroni A., Nadig K., Luechinger R., Jäncke L.. The rewarding value of good motor performance in the context of monetary incentives. Neuropsychologia. 2012;50(8):1739-1747. doi:10.1016/j.neuropsychologia.2012.03.030.
    1. Hardwick R. M., Rajan V. A., Bastian A. J., Krakauer J. W., Celnik P. A.. Motor learning in stroke. Neurorehabil Neural Repair. 2017;31(2):178-189. doi:10.1177/1545968316675432.
    1. Schaefer S. Y., Patterson C. B., Lang C. E.. Transfer of training between distinct motor tasks after stroke. Neurorehabil Neural Repair. 2013;27(7):602-612. doi:10.1177/1545968313481279.
    1. Wittmann F., Held J. P., Lambercy O., et al.. Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system. J Neuroeng Rehabil. 2016;13(1):75. doi:10.1186/s12984-016-0182-1.
    1. Widmer M., Held J. P., Wittmann F., Lambercy O., Lutz K., Luft A. R.. Does motivation matter in upper-limb rehabilitation after stroke? ArmeoSenso-reward: Study protocol for a randomized controlled trial. Trials. 2017;18(1):580. doi:10.1186/s13063-017-2328-2.
    1. ICH . ICH Harmonised Tripartite Guideline. Guideline for Good Clinical Practice E6(R1). ICH; 1996.
    1. Boutron I., Moher D., Altman D. G., Schulz K. F., Ravaud P., Group C. Extending the CONSORT statement to randomized trials of nonpharmacologic treatment: Explanation and elaboration. Ann Intern Med. 2008;148(4):295-309.
    1. Chan A.-W., Tetzlaff J. M., Altman D. G., et al.. SPIRIT 2013 statement: Defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200-7. doi:10.7326/0003-4819-158-3-201302050-00583.
    1. Wittmann F., Lambercy O., Gassert R.. Magnetometer-based drift correction durinsssg rest in IMU arm motion tracking. Sensors. 2019;19(6):1312. doi:10.3390/s19061312.
    1. Wittmann F, Lambercy O, Gonzenbach RR, et al.. Assessment-driven arm therapy at home using an IMU-based virtual reality system. IEEE; 2015:707-712.
    1. Gladstone D. J., Danells C. J., Black S. E.. The fugl-meyer assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabil Neural Repair. 2002;16(3):232-240. doi:10.1177/154596802401105171.
    1. Wolf S. L., Catlin P. A., Ellis M., Archer A. L., Morgan B., Piacentino A.. Assessing wolf motor function test as outcome measure for research in patients after stroke. Stroke. 2001;32(7):1635-1639. doi:10.1161/01.str.32.7.1635.
    1. Mathiowetz V., Volland G., Kashman N., Weber K.. Adult norms for the box and block test of manual dexterity. Am J Occup Ther. 1985;39(6):386-391. doi:10.5014/ajot.39.6.386.
    1. van der Lee J. H., Beckerman H., Knol D. L., de Vet H. C. W., Bouter L. M.. Clinimetric properties of the motor activity log for the assessment of arm use in hemiparetic patients. Stroke. 2004;35(6):1410-1414. doi:10.1161/01.STR.0000126900.24964.7e.
    1. Mahoney FI, Barthel DW. Functional evaluation: The barthel index. Md State Med J. Feb 1965;14:61-5.
    1. van Swieten J. C., Koudstaal P. J., Visser M. C., Schouten H. J., van Gijn J.. Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988;19(5):604-607. doi:10.1161/01.str.19.5.604.
    1. Bates D., Mächler M., Bolker B., Walker S. Fitting linear mixed-effects models usinglme4. J Stat Software. 2015;67(1):48. doi:10.18637/jss.v067.i01.
    1. Chen H.-M., Chen C. C., Hsueh I.-P., Huang S.-L., Hsieh C.-L.. Test-retest reproducibility and smallest real difference of 5 hand function tests in patients with stroke. Neurorehabil Neural Repair. Jun 2009;23(5):435-440. doi:10.1177/1545968308331146.
    1. Schott B. H., Minuzzi L., Krebs R. M., et al.. Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J Neurosci. 2008;28(52):14311-14319. doi:10.1523/JNEUROSCI.2058-08.2008.
    1. Walker M. P., Stickgold R., Alsop D., Gaab N., Schlaug G. Sleep-dependent motor memory plasticity in the human brain. Neuroscience. 2005;133(4):911-917. doi:10.1016/j.neuroscience.2005.04.007.
    1. Penhune VB, Doyon J. Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences. J Neurosci. 2002;22(4):1397-406.
    1. Subramanian S. K., Lourenço C. B., Chilingaryan G., Sveistrup H., Levin M. F.. Arm motor recovery using a virtual reality intervention in chronic stroke. Neurorehabil Neural Repair. 2013;27(1):13-23. doi:10.1177/1545968312449695.
    1. Kundert R. Improving Inpatient Stroke Rehabilitation: Proportional Recovery, Neural Coupling and Performance Feedback. ETH Zurich; 2020.
    1. Studer B., Knecht S.. A benefit-cost framework of motivation for a specific activity progress in brain research. Elsevier; 2016:25-47.
    1. Widmer M., Lutz K., Luft A. R.. Reduced striatal activation in response to rewarding motor performance feedback after stroke. Neuroimage Clin. 2019;24:102036. doi:10.1016/j.nicl.2019.102036.
    1. Winter B., Brunecker P., Fiebach J. B., Jungehulsing G. J., Kronenberg G., Endres M.. Striatal infarction elicits secondary extrafocal MRI changes in ipsilateral substantia nigra. PLoS One. 2015;10(9):e0136483. doi:10.1371/journal.pone.0136483.
    1. Anwer S., Alghadir A.. Incidence, prevalence, and risk factors of hemiplegic shoulder pain: A systematic review. Int J Environ Res Publ Health. Jul 9 2020;17(14):4962. doi:10.3390/ijerph17144962.
    1. Ashford S., Slade M., Malaprade F., Turner-Stokes L.. Evaluation of functional outcome measures for the hemiparetic upper limb: a systematic review. J Rehabil Med. 2008;40(10):787-795. doi:10.2340/16501977-0276.
    1. Schwarz A., Kanzler C. M., Lambercy O., Luft A. R., Veerbeek J. M.. Systematic review on kinematic assessments of upper limb movements after stroke. Stroke. 2019;50(3):718-727. doi:10.1161/STROKEAHA.118.023531.

Source: PubMed

3
Abonnieren