Vinegar Consumption Increases Insulin-Stimulated Glucose Uptake by the Forearm Muscle in Humans with Type 2 Diabetes

Panayota Mitrou, Eleni Petsiou, Emilia Papakonstantinou, Eirini Maratou, Vaia Lambadiari, Panayiotis Dimitriadis, Filio Spanoudi, Sotirios A Raptis, George Dimitriadis, Panayota Mitrou, Eleni Petsiou, Emilia Papakonstantinou, Eirini Maratou, Vaia Lambadiari, Panayiotis Dimitriadis, Filio Spanoudi, Sotirios A Raptis, George Dimitriadis

Abstract

Background and aims: Vinegar has been shown to have a glucose-lowering effect in patients with glucose abnormalities. However, the mechanisms of this effect are still obscure. The aim of this randomised, crossover study was to investigate the effect of vinegar on glucose metabolism in muscle which is the most important tissue for insulin-stimulated glucose disposal.

Materials and methods: Eleven subjects with DM2 consumed vinegar or placebo (at random order on two separate days, a week apart), before a mixed meal. Plasma glucose, insulin, triglycerides, nonesterified fatty acids (NEFA), and glycerol were measured preprandially and at 30-60 min for 300 min postprandially from the radial artery and from a forearm vein. Muscle blood flow was measured with strain-gauge plethysmography. Glucose uptake was calculated as the arteriovenous difference of glucose multiplied by blood flow.

Results: Vinegar compared to placebo (1) increased forearm glucose uptake (p = 0.0357), (2) decreased plasma glucose (p = 0.0279), insulin (p = 0.0457), and triglycerides (p = 0.0439), and (3) did not change NEFA and glycerol.

Conclusions: In DM2 vinegar reduces postprandial hyperglycaemia, hyperinsulinaemia, and hypertriglyceridaemia without affecting lipolysis. Vinegar's effect on carbohydrate metabolism may be partly accounted for by an increase in glucose uptake, demonstrating an improvement in insulin action in skeletal muscle. This trial is registered with Clinicaltrials.gov NCT02309424.

Figures

Figure 1
Figure 1
Arterial plasma glucose (p = 0.0279) (a) and insulin (p = 0.0457) (b) levels in subjects consuming vinegar (V+) or placebo (V−). At t = 0 min, a mixed meal was given.
Figure 2
Figure 2
Forearm muscle glucose uptake (p = 0.0357) (a) and muscle blood flow (p = NS) (b) in subjects consuming vinegar (V+) or placebo (V−). At t = 0 min, a mixed meal was given.
Figure 3
Figure 3
Arterial plasma triglycerides (p = 0.0439) (a), NEFA (p = NS) (b), and glycerol (p = NS) (c) levels in subjects consuming vinegar (V+) or placebo (V−). At t = 0 min, a mixed meal was given.

References

    1. Johnston C. S., Gaas C. A. Vinegar: medicinal uses and antiglycemic effect. Medscape General Medicine. 2006;8(2, article 61)
    1. Johnston C. S., Buller A. J. Vinegar and peanut products as complementary foods to reduce postprandial glycemia. Journal of the American Dietetic Association. 2005;105(12):1939–1942. doi: 10.1016/j.jada.2005.07.012.
    1. Johnston C. S., Steplewska I., Long C. A., Harris L. N., Ryals R. H. Examination of the antiglycemic properties of vinegar in healthy adults. Annals of Nutrition and Metabolism. 2010;56(1):74–79. doi: 10.1159/000272133.
    1. Leeman M., Östman E., Björck I. Vinegar dressing and cold storage of potatoes lowers postprandial glycaemic and insulinaemic responses in healthy subjects. European Journal of Clinical Nutrition. 2005;59(11):1266–1271. doi: 10.1038/sj.ejcn.1602238.
    1. Östman E., Granfeldt Y., Persson L., Björck I. Vinegar supplementation lowers glucose and insulin responses and increases satiety after a bread meal in healthy subjects. European Journal of Clinical Nutrition. 2005;59(9):983–988. doi: 10.1038/sj.ejcn.1602197.
    1. Sugiyama M., Tang A. C., Wakaki Y., Koyama W. Glycemic index of single and mixed meal foods among common Japanese foods with white rice as a reference food. European Journal of Clinical Nutrition. 2003;57(6):743–752. doi: 10.1038/sj.ejcn.1601606.
    1. Johnston C. S., Kim C. M., Buller A. J. Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care. 2004;27(1):281–282. doi: 10.2337/diacare.27.1.281.
    1. Mitrou P., Raptis A. E., Lambadiari V., et al. Vinegar decreases postprandial hyperglycemia in patients with type 1 diabetes. Diabetes Care. 2010;33(2, article e27) doi: 10.2337/dc09-1354.
    1. Petsiou E. I., Mitrou P. I., Raptis S. A., Dimitriadis G. D. Effect and mechanisms of action of vinegar on glucose metabolism, lipid profile, and body weight. Nutrition Reviews. 2014;72(10):651–661. doi: 10.1111/nure.12125.
    1. Liljeberg H., Björck I. Delayed gastric emptying rate may explain improved glycaemia in healthy subjects to a starchy meal with added vinegar. European Journal of Clinical Nutrition. 1998;52(5):368–371. doi: 10.1038/sj.ejcn.1600572.
    1. Hlebowicz J., Darwiche G., Björgell O., Almér L.-O. Effect of apple cider vinegar on delayed gastric emptying in patients with type 1 diabetes mellitus: a pilot study. BMC Gastroenterology. 2007;7, article 46 doi: 10.1186/1471-230x-7-46.
    1. Ogawa N., Satsu H., Watanabe H., et al. Acetic acid suppresses the increase in disaccharidase activity that occurs during culture of Caco-2 cells. Journal of Nutrition. 2000;130(3):507–513.
    1. White A. M., Johnston C. S. Vinegar ingestion at bedtime moderates waking glucose concentrations in adults with well-controlled type 2 diabetes. Diabetes Care. 2007;30(11):2814–2815. doi: 10.2337/dc07-1062.
    1. Fushimi T., Sato Y. Effect of acetic acid feeding on the circadian changes in glycogen and metabolites of glucose and lipid in liver and skeletal muscle of rats. British Journal of Nutrition. 2005;94(5):714–719. doi: 10.1079/bjn20051545.
    1. Fushimi T., Tayama K., Fukaya M., et al. The efficacy of acetic acid for glycogen repletion in rat skeletal muscle after exercise. International Journal of Sports Medicine. 2002;23(3):218–222. doi: 10.1055/s-2002-23172.
    1. Sakakibara S., Yamauchi T., Oshima Y., Tsukamoto Y., Kadowaki T. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochemical and Biophysical Research Communications. 2006;344(2):597–604. doi: 10.1016/j.bbrc.2006.03.176.
    1. Fushimi T., Suruga K., Oshima Y., Fukiharu M., Tsukamoto Y., Goda T. Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. British Journal of Nutrition. 2006;95(5):916–924. doi: 10.1079/BJN20061740.
    1. Lozano J., Juárez-Flores B., Pinos-Rodríguez J., et al. Supplementary effects of vinegar on body weight and blood metabolites in healthy rats fed conventional diets and obese rats fed high-caloric diets. Journal of Medicinal Plants Research. 2012;6(24):4135–4141. doi: 10.5897/jmpr12.686.
    1. Moon Y.-J., Choi D.-S., Oh S.-H., Song Y.-S., Cha Y.-S. Effects of persimmon-vinegar on lipid and carnitine profiles in mice. Food Science and Biotechnology. 2010;19(2):343–348. doi: 10.1007/s10068-010-0049-3.
    1. Setorki M., Asgary S., Eidi A., Rohani A. H., Khazaei M. Acute effects of vinegar intake on some biochemical risk factors of atherosclerosis in hypercholesterolemic rabbits. Lipids in Health and Disease. 2010;9, article 10 doi: 10.1186/1476-511x-9-10.
    1. Yamashita H., Fujisawa K., Ito E., et al. Improvement of obesity and glucose tolerance by acetate in Type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Bioscience, Biotechnology and Biochemistry. 2007;71(5):1236–1243. doi: 10.1271/bbb.60668.
    1. Beheshti Z., Huak Chan Y., Sharif Nia H., et al. Influence of apple cider vinegar on blood lipids. Life Science Journal. 2012;9(4):2431–2440.
    1. Kondo T., Kishi M., Fushimi T., Ugajin S., Kaga T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Bioscience, Biotechnology and Biochemistry. 2009;73(8):1837–1843. doi: 10.1271/bbb.90231.
    1. Yamashita H., Maruta Y. H., Jozuka M., et al. Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Bioscience, Biotechnology and Biochemistry. 2009;73(3):570–576. doi: 10.1271/bbb.80634.
    1. Dimitriadis G., Mitrou P., Lambadiari V., et al. Insulin action in adipose tissue and muscle in hypothyroidism. Journal of Clinical Endocrinology and Metabolism. 2006;91(12):4930–4937. doi: 10.1210/jc.2006-0478.
    1. Dimitriadis G., Mitrou P., Lambadiari V., et al. Glucose and lipid fluxes in the adipose tissue after meal ingestion in hyperthyroidism. Journal of Clinical Endocrinology and Metabolism. 2006;91(3):1112–1118. doi: 10.1210/jc.2005-0960.
    1. Coppack S. W., Fisher R. M., Gibbons G. F., et al. Postprandial substrate deposition in human forearm and adipose tissues in vivo. Clinical Science. 1990;79(4):339–348.
    1. Frayn K. N., Shadid S., Hamlani R., et al. Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. The American Journal of Physiology. 1994;266(3):E308–E317.
    1. Lambadiari V., Mitrou P., Maratou E., Raptis A., Raptis S. A., Dimitriadis G. Increases in muscle blood flow after a mixed meal are impaired at all stages of type 2 diabetes. Clinical Endocrinology. 2012;76(6):825–830. doi: 10.1111/j.1365-2265.2011.04211.x.
    1. Mitrou P., Boutati E., Lambadiari V., et al. Rates of glucose uptake in adipose tissue and muscle in vivo after a mixed meal in women with morbid obesity. Journal of Clinical Endocrinology and Metabolism. 2009;94(8):2958–2961. doi: 10.1210/jc.2008-2297.
    1. Liatis S., Grammatikou S., Poulia K.-A., et al. Vinegar reduces postprandial hyperglycaemia in patients with type II diabetes when added to a high, but not to a low, glycaemic index meal. European Journal of Clinical Nutrition. 2010;64(7):727–732. doi: 10.1038/ejcn.2010.89.
    1. Johnston C. S., White A. M., Kent S. M. Preliminary evidence that regular vinegar ingestion favorably influences hemoglobin A1c values in individuals with type 2 diabetes mellitus. Diabetes Research and Clinical Practice. 2009;84(2):e15–e17. doi: 10.1016/j.diabres.2009.02.005.
    1. Van Dijk J.-W., Tummers K., Hamer H. M., Van Loon L. J. C. Vinegar co-ingestion does not improve oral glucose tolerance in patients with type 2 diabetes. Journal of Diabetes and Its Complications. 2012;26(5):460–461. doi: 10.1016/j.jdiacomp.2012.05.009.
    1. Brighenti F., Castellani G., Benini L., et al. Effect of neutralized and native vinegar on blood glucose and acetate responses to a mixed meal in healthy subjects. European Journal of Clinical Nutrition. 1995;49(4):242–247.
    1. Dimitriadis G., Mitrou P., Lambadiari V., Maratou E., Raptis S. A. Insulin effects in muscle and adipose tissue. Diabetes Research and Clinical Practice. 2011;93(supplement 1):S52–S59. doi: 10.1016/s0168-8227(11)70014-6.
    1. Barrett E. J., Eggleston E. M., Inyard A. C., et al. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009;52(5):752–764. doi: 10.1007/s00125-009-1313-z.
    1. Clark M. G., Wallis M. G., Barrett E. J., et al. Blood flow and muscle metabolism: a focus on insulin action. American Journal of Physiology—Endocrinology and Metabolism. 2003;284(2):E241–E258. doi: 10.1152/ajpendo.00408.2002.
    1. Sakakibara S., Murakami R., Takahashi M., et al. Vinegar intake enhances flow-mediated vasodilatation via upregulation of endothelial nitric oxide synthase activity. Bioscience, Biotechnology and Biochemistry. 2010;74(5):1055–1061. doi: 10.1271/bbb.90953.
    1. Mitrou P., Petsiou E., Papakonstantinou E., et al. The role of acetic acid on glucose uptake and blood flow rates in the skeletal muscle in humans with impaired glucose tolerance. European Journal of Clinical Nutrition. 2015 doi: 10.1038/ejcn.2014.289.
    1. Waller A. P., Geor R. J., Spriet L. L., Heigenhauser G. J. F., Lindinger M. I. Oral acetate supplementation after prolonged moderate intensity exercise enhances early muscle glycogen resynthesis in horses. Experimental Physiology. 2009;94(8):888–898. doi: 10.1113/expphysiol.2009.047068.
    1. Moon Y.-J., Cha Y.-S. Effects of persimmon-vinegar on lipid metabolism and alcohol clearance in chronic alcohol-fed rats. Journal of Medicinal Food. 2008;11(1):38–45. doi: 10.1089/jmf.2007.071.
    1. Panetta C. J., Jonk Y. C., Shapiro A. C. Prospective randomized clinical trial evaluating the impact of vinegar on lipids in non-diabetics. World Journal of Cardiovascular Diseases. 2013;03(02):191–196. doi: 10.4236/wjcd.2013.32027.

Source: PubMed

3
Abonnieren