Determinants of hospitalization in Chinese patients with type 2 diabetes receiving a peer support intervention and JADE integrated care: the PEARL randomised controlled trial

Roseanne O Yeung, Jing-Heng Cai, Yuying Zhang, Andrea O Luk, Jun-Hao Pan, Junmei Yin, Risa Ozaki, Alice P S Kong, Ronald Ma, Wing-Yee So, Chiu Chi Tsang, K P Lau, Edwin Fisher, Williams Goggins, Brian Oldenburg, Julianna Chan, Roseanne O Yeung, Jing-Heng Cai, Yuying Zhang, Andrea O Luk, Jun-Hao Pan, Junmei Yin, Risa Ozaki, Alice P S Kong, Ronald Ma, Wing-Yee So, Chiu Chi Tsang, K P Lau, Edwin Fisher, Williams Goggins, Brian Oldenburg, Julianna Chan

Abstract

Background: In a randomized controlled trial of 628 Chinese patients with type 2 diabetes receiving multidisciplinary care in the Joint Asia Diabetes Evaluation (JADE) Progam, 372 were randomized to receive additional telephone-based peer support (Peer Empowerment And Remote communication Linked by information technology, PEARL) intervention. After 12 months, all-cause hospitalization was reduced by half in the PEARL group especially in those with high Depression Anxiety and Stress Scale (DASS) scores.

Methods: We used stratified analyses, negative binomial regression, and structural equation modelling (SEM) to examine the inter-relationships between emotions, self-management, cardiometabolic risk factors, and hospitalization.

Results: Hospitalized patients were older, more likely to have heart or kidney disease, and negative emotions than those without hospitalization. Patients with high DASS score who did not receive peer support had the highest hospitalization rates. After adjustment for confounders, peer support reduced the frequency of hospitalizations by 48% with a relative risk of 0.52 (95% CI 0·35-0·79;p = 0·0018). Using SEM, improvement of negative emotions reduced treatment nonadherence (Est = 0.240, p = 0.034) and hospitalizations (Est=-0.218, p = 0.001). The latter was also reduced by an interactive term of peer support and chronic kidney disease (Est = 0.833, p = < 0.001) and that of peer support and heart disease (Est = 0.455, p = 0.001).

Conclusions: In type 2 diabetes, improvement of negative emotions and peer support reduced hospitalizations, especially in those with comorbidities, in part mediated through improving treatment nonadherence. Integrating peer support is feasible and adds value to multidisciplinary care, augmented by information technology, especially in patients with comorbidities.

Trial registration: NCT00950716 Registered July 31, 2009.

Keywords: Adherence; Hospitalizations; Integrated care; Negative emotions; Peer support; Quality improvement; Structural equation modelling.

Conflict of interest statement

This study was approved by the Joint CUHK-NTEC Clinical Research Ethics Committee. Agreeable patients gave written informed consent. This trial was pre-registered at clinicaltrial.gov under identifier NCT00950716 Registered July 31, 2009.Consent for publication of raw data was not obtained and the dataset could, in theory, pose a threat to confidentiality. The researchers did not specifically ask for anonymized data to be deposited in the public repository. All data are anonymized and captured using the portal implemented through the Asia Diabetes Foundation established as a knowledge transfer project in the form of a registered charitable research organization governed by the CUHK Foundation. A patient log was kept by the clinics for identification and linkage to the hospitalization data using the CMS governed by the Hong Kong Hospital Authority, which is the main public healthcare provider in Hong Kong.JCNC has received research grant and honorarium for consultancy or giving lectures from Eli Lilly. All research grants were awarded to the CUHK or ADF. All honoraria have been donated to the Chinese University of Hong Kong to support diabetes research and education. JCNC is also the Chief Executive Officer (pro bono) of ADF, a charitable organisation governed by the CUHK Foundation (www.adf.org.hk) which develops the web-based JADE program to conduct quality improvement and translational research programs through private-public partnerships. EF is the Global Director of the Peers for Progress, supported by the American Academy of Family Physicians Foundation and funded by Eli Lilly Company and Foundation. Other authors declared no conflict of interest relevant to this manuscript.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Proposed structural equation model with hypothesized explanatory and outcome variables (rectangle: measured variables; oval: latent variables) and interlinking paths to explain the multi-causality of hospitalization (15). Abbreviations: PEARL: peer support intervention, Frequency: number of hospitalization episodes, Stay: Length of hospital stay, PHQ-9: 9-item Patient Health Questionnaire assessing depressive symptoms, DASS-21: 21-item Depression Anxiety Stress Scale, CDDS-15: 15-item Chinese Diabetes Distress Scale, Medication Adherence: 4-item Morisky Medication Adherence Scale, CKD: Chronic Kidney Disease with eGFR 15–60 ml/min/1.73 m2, CVD: Cardiovascular disease including coronary heart disease (myocardial infarction, unstable angina, percutaneous coronary intervention, coronary bypass operation), stroke, peripheral vascular disease (lower extremity amputation, absent foot pulses with ankle:brachial ratio < 0.9 and/or lower limb revascularization), BP: Blood pressure, SBP (systolic) DBP (diastolic), TC/LDL-C: Total cholesterol/LDL-cholesterol, TG: Triglycerides, BMI: Body mass index, Waist: waist circumference, N.B. Baseline explanatory measures were analyzed
Fig. 2
Fig. 2
Kaplan Meier curves showing the cumulative proportions of people with type 2 diabetes requiring hospitalization. a Stratified by assignment to peer support (PEARL). b Stratified by baseline negative emotions (DASS≥17). c Stratified by peer support and baseline negative emotions. Pearl denotes peer support intervention. Depression Anxiety Stress Scale are denoted as DASS, using ≥17 points as the cut off for those in the top quintile of subjects with negative emotions
Fig. 3
Fig. 3
A structural equation model (SEM) showing the effects of change in negative emotions (DASS, PHQ9, CDDS) on hospitalizations (admission episodes and stay) and medication adherence as well as the interaction between peer support and CKD/CVD on hospitalizations. Goodness of fit indices of the model: pvalue of the Chi-squared test is 0.1330; the root mean square error of approximation is 0.019, the CFI value is 0.978. The figure represents the estimates of latent variable relationships to outcome variables with pvalues in parentheses (refer to Table 2 for full details of the SEM). Abbreviations: PHQ-9: 9-item Patient Health Questionnaire assessing depressive symptoms, DASS-21: 21-item Depression Anxiety Stress Scale, CDDS-15: 15-item Chinese Diabetes Distress Scale, Medication Adherence: 4-item Morisky Medication Adherence Scale, CKD: Chronic Kidney Disease as estimated glomerular filtration rate 15–60 ml/min/1.73 m , CVD: Cardiovascular disease including coronary heart disease (myocardial infarction, unstable angina, percutaneous coronary intervention, coronary bypass operation), stroke, peripheral vascular disease (lower extremity amputation, absent foot pulses with ankle:brachial ratio

References

    1. Ali MK, Bullard KM, Saaddine JB, Cowie CC, Imperatore G, Gregg EW. Achievement of goals in U.S. diabetes care, 1999-2010. N Engl J Med. 2013;368:1613–1624. doi: 10.1056/NEJMsa1213829.
    1. Bo S, Ciccone G, Grassi G, Gancia R, Rosato R, Merletti F, et al. Patients with type 2 diabetes had higher rates of hospitalization than the general population. J Clin Epidemiol. 2004;57:1196–1201. doi: 10.1016/j.jclinepi.2004.02.015.
    1. Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitabchi AE. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab. 2002;87:978–982. doi: 10.1210/jcem.87.3.8341.
    1. Calderón-Larrañaga A, Abad-Díez JM, Gimeno-Feliu LA, Marta-Moreno J, González-Rubio F, Clerencia-Sierra M, et al. Global health care use by patients with type-2 diabetes: does the type of comorbidity matter? Eur J Intern Med. 2015;26:203–210. doi: 10.1016/j.ejim.2015.02.011.
    1. Khalid JM, Raluy-Callado M, Curtis BH, Boye KS, Maguire A, Reaney M. Rates and risk of hospitalisation among patients with type 2 diabetes: retrospective cohort study using the UK general practice research database linked to English hospital episode statistics. Int J Clin Pract. 2013:1–9. 10.1111/ijcp.12265.
    1. Ahola AJ, Groop PH. Barriers to self-management of diabetes. Diabet Med. 2013;30:413–420. doi: 10.1111/dme.12105.
    1. Norris SLS, Lau J, Smith S, Smith SJ, Schmid C, Engelgau M. Self-management education for adults with type 2 diabetes a meta-analysis of the effect on glycemic control. Diabetes Care. 2002;25:1159–1171. doi: 10.2337/diacare.25.7.1159.
    1. Dennis CL. Peer support within a health care context: a concept analysis. Int J Nurs Stud. 2003;40:321–332. doi: 10.1016/S0020-7489(02)00092-5.
    1. Heisler M. Overview of peer support models to improve diabetes self management and clinical outcomes. Diabetes Spectr. 2007;20:214–221. doi: 10.2337/diaspect.20.4.214.
    1. Keyserling TC, Samuel-Hodge CD, Ammerman AS, Ainsworth BE, Henríquez-Roldán CF, Elasy TA, et al. A randomized trial of an intervention to improve self-care behaviors of African-American women with type 2 diabetes: impact on physical activity. Diabetes Care. 2002;25:1576–1583. doi: 10.2337/diacare.25.9.1576.
    1. Lorig K, Ritter PL, Villa FJ, Armas J. Community-based peer-led diabetes self-management: a randomized trial. Diabetes Educ. 2009;35:641–651. doi: 10.1177/0145721709335006.
    1. Gillespie P, O’Shea E, Paul G, O’Dowd T, Smith SM. Cost effectiveness of peer support for type 2 diabetes. Int J Technol Assess Health Care. 2012;28:3–11. doi: 10.1017/S0266462311000663.
    1. Pennington M, Visram S, Donaldson C, White M, Lhussier M, Deane K, et al. Cost-effectiveness of health-related lifestyle advice delivered by peer or lay advisors: synthesis of evidence from a systematic review. Cost Eff Resour Alloc. 2013;11:30. doi: 10.1186/1478-7547-11-30.
    1. Chan JCN, Ozaki R, Luk A, Kong APS, Ma RCW, Chow FCC, et al. Delivery of integrated diabetes care using logistics and information technology--the joint Asia diabetes evaluation (JADE) program. Diabetes Res Clin Pract. 2014;106(Suppl):S295–S304. doi: 10.1016/S0168-8227(14)70733-8.
    1. Chan JCN, Sui Y, Oldenburg B, Zhang Y, Chung HHY, Goggins W, et al. Effects of telephone-based peer support in patients with type 2 diabetes mellitus receiving integrated care. JAMA Intern Med. 2014;174:972–981. doi: 10.1001/jamainternmed.2014.655.
    1. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16:606–613. doi: 10.1046/j.1525-1497.2001.016009606.x.
    1. Lovibond PF, Lovibond SH. The structure of negative emotional states: comparison of the depression anxiety stress scales (DASS) with the Beck depression and anxiety inventories. Behav Res Ther. 1995;33:335–343. doi: 10.1016/0005-7967(94)00075-U.
    1. Ting RZ, Nan H, Yu MW, Kong AP, Ma RC, Wong RY, et al. Diabetes-related distress and physical and psychological health in chinese type 2 diabetic patients. Diabetes Care. 2011;34:1094–1096. doi: 10.2337/dc10-1612.
    1. Morisky DE, Green LW, Levine DM. Concurrent and predictive validity of a self-reported measure of medication adherence. Med Care. 1986;24:67–74. doi: 10.1097/00005650-198601000-00007.
    1. Bollen KA. Structural equations with latent variables. 1989.
    1. Sokol MC, KA MG, Verbrugge RR, Epstein RS. Impact of medication adherence on hospitalization risk and healthcare cost. Med Care. 2005;43:521–530. doi: 10.1097/.
    1. Karahalios A, Somarajah G, Hamblin PS, Karunajeewa H, Janus ED. Quantifying the hidden healthcare cost of diabetes mellitus in Australian hospital patients. Intern Med J. 2017; 10.1111/imj.13685.
    1. Muthén L, Muthén B. Mplus user’s guide (version 7.0). Muthén and Muthén; 2007. .
    1. Dale JR, Williams SM, Bowyer V. What is the effect of peer support on diabetes outcomes in adults? A systematic review. Diabet Med. 2012;29:1361–1377. doi: 10.1111/j.1464-5491.2012.03749.x.
    1. Bello AK, Qarni B, Samimi A, Okel J, Chatterley T, Okpechi IG, et al. Effectiveness of multifaceted care approach on adverse clinical outcomes in nondiabetic CKD: a systematic review and meta-analysis. Kidney Int reports. 2017;2:617–625. doi: 10.1016/j.ekir.2017.02.007.
    1. Wan TTH, Terry A, Cobb E, McKee B, Tregerman R, Barbaro SDS. Strategies to modify the risk of heart failure readmission: a systematic review and meta-analysis. Heal Serv Res Manag Epidemiol. 2017;4:2333392817701050.
    1. Taylor F, Gutteridge R, Willis C. Peer support for CKD patients and carers: overcoming barriers and facilitating access. Health Expect. 2016;19:617–630. doi: 10.1111/hex.12348.
    1. Husaini BA, Hull PC, Sherkat DE, Emerson JS, Overton MT, Craun C, et al. Diabetes, depression, and healthcare utilization among African Americans in primary care. J Natl Med Assoc. 2004;96:476–484.
    1. Hutter N, Schnurr A, Baumeister H. Healthcare costs in patients with diabetes mellitus and comorbid mental disorders--a systematic review. Diabetologia. 2010;53:2470–2479. doi: 10.1007/s00125-010-1873-y.
    1. Sullivan M, O’Connor P, Feeney P, Hire D, Simmons DL, Raisch D, et al. Depression predicts all-cause mortality. Diabetes Care. 2012;35:1708–1715. doi: 10.2337/dc11-1791.
    1. Rubin RR, Peyrot M. Psychological issues and treatments for people with diabetes. J Clin Psychol. 2001;57:457–478. doi: 10.1002/jclp.1041.
    1. Garrison MM, Katon W, Richardson L. The impact of psychiatric comorbidities on readmissions for diabetes in youth. Diabetes Care. 2005;28:2150–2154. doi: 10.2337/diacare.28.9.2150.
    1. Currie CJ, Peyrot M, Morgan CL, Poole CD, Jenkins-Jones S, Rubin RR, et al. The impact of treatment noncompliance on mortality in people with type 2 diabetes. Diabetes Care. 2012;35:1279–1284. doi: 10.2337/dc11-1277.
    1. Zhang Y, Ting RZ, Yang W, Jia W, Li W, Ji L, et al. Depression in Chinese patients with type 2 diabetes: associations with hyperglycemia, hypoglycemia, and poor treatment adherence. J Diabetes. 2015;:n/a-n/a. doi:10.1111/1753-0407.12238.
    1. Jha AK, Aubert RE, Yao J, Teagarden JR, Epstein RS. Greater adherence to diabetes drugs is linked to less hospital use and could save nearly $5 billion annually. Health Aff (Millwood) 2012;31:1836–1846. doi: 10.1377/hlthaff.2011.1198.

Source: PubMed

3
Suscribir