Predicting osteoporosis with body compositions in postmenopausal women: a non-invasive method

Wei-Hsiu Hsu, Wei-Bin Hsu, Chun-Hao Fan, Robert Wen-Wei Hsu, Wei-Hsiu Hsu, Wei-Bin Hsu, Chun-Hao Fan, Robert Wen-Wei Hsu

Abstract

Background: The prevalence of osteoporosis is rising steadily as the aging population increases. Bone mineral density (BMD) assessment is a golden standard to establish the diagnosis of osteoporosis. However, the accessibility and radiation exposure limited its role in community screening. A more convenient approach for screening is suggested.

Methods: A total of 363 postmenopausal women over the age of 50 were included in this study and assessed with the body composition [including fat-free mass (FFM), fat mass (FM), and basal metabolic rate (BMR)] and BMD. Normal distributions and correlation coefficients among variables were calculated using the Shapiro-Wilk test and Pearson's correlation analysis, respectively. A receiver operating characteristic (ROC) curve was plotted, and the area under ROC curves (AUC) was determined to obtain the optimal cutoff values of the body composition variables for osteoporosis prediction.

Results: The correlation coefficient of FFM, FM, FM ratio, and BMR with femur neck T-score was 0.373, 0.266, 0.165, and 0.369, respectively, while with spine T-score was 0.350, 0.251, 0.166, and 0.352, respectively (p < 0.01 for all). FFM, FM, and BMR showed an optimal cutoff value of 37.9 kg, 18.6 kg, and 1187.5 kcal, respectively, for detecting osteoporosis.

Conclusions: The present study provided a model to predict osteoporosis in postmenopausal women, and the optimal cutoff value of FFM, FM, and BMR could be calculated in the Asian population. Among these factors, BMR seemed a better predictor than others. The BMR could be a target for exercise intervention in postmenopausal women for maintaining or improving BMD.

Trial registration: ClinicalTrials.gov , NCT02936336 . Retrospectively registered on13 October 2016.

Keywords: Basal metabolic rate; Fat mass; Fat-free mass; Osteoporosis; Postmenopausal women.

Conflict of interest statement

All authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The example of BMD measurement of the a femoral neck and b lumbar spine L2–L4 by DXA in female aged 69
Fig. 2
Fig. 2
ROC analysis to identify the optimal cutoff value of FFM, FM, FM ratio, and BMR to osteoporosis. Relationship between sensitivity and specificity at different cutoff scores in various variables

References

    1. Cauley JA. Public health impact of osteoporosis. J Gerontol A Biol Sci Med Sci. 2013;68(10):1243–1251. doi: 10.1093/gerona/glt093.
    1. Schmitt NM, Schmitt J, Doren M. The role of physical activity in the prevention of osteoporosis in postmenopausal women-an update. Maturitas. 2009;63(1):34–38. doi: 10.1016/j.maturitas.2009.03.002.
    1. Compston J, Cooper A, Cooper C, Francis R, Kanis JA, Marsh D, McCloskey E, Reid DM, Selby P, Wilkins M, National Osteoporosis Guideline Group (NOGG) Guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men from the age of 50 years in the UK. Maturitas. 2009;62(2):105–108. doi: 10.1016/j.maturitas.2008.11.022.
    1. Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA) Arch Osteoporos. 2013;8:136. doi: 10.1007/s11657-013-0136-1.
    1. Vondracek SF, Hansen LB, McDermott MT. Osteoporosis risk in premenopausal women. Pharmacotherapy. 2009;29(3):305–317. doi: 10.1592/phco.29.3.305.
    1. Biz C, Berizzi A, Crimi A, Marcato C, Trovarelli G, Ruggieri P. Management and treatment of femoral neck stress fractures in recreational runners: a report of four cases and review of the literature. Acta Biomed. 2017;88(4S):96–106. doi: 10.23750/abm.v88i4-S.6800.
    1. Pisani P, Renna MD, Conversano F, Casciaro E, Di Paola M, Quarta E, et al. Major osteoporotic fragility fractures: risk factor updates and societal impact. World J Orthop. 2016;7(3):171–181. doi: 10.5312/wjo.v7.i3.171.
    1. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726–1733. doi: 10.1007/s00198-006-0172-4.
    1. Wang CB, Lin CF, Liang WM, Cheng CF, Chang YJ, Wu HC, et al. Excess mortality after hip fracture among the elderly in Taiwan: a nationwide population-based cohort study. Bone. 2013;56(1):147–153. doi: 10.1016/j.bone.2013.05.015.
    1. Tu KN, Lie JD, Wan CKV, Cameron M, Austel AG, Nguyen JK, van K, Hyun D. Osteoporosis: a review of treatment options. P T. 2018;43(2):92–104.
    1. Cui LH, Shin MH, Kweon SS, Park KS, Lee YH, Chung EK, Nam HS, Choi JS. Relative contribution of body composition to bone mineral density at different sites in men and women of South Korea. J Bone Miner Metab. 2007;25(3):165–171. doi: 10.1007/s00774-006-0747-3.
    1. Gonnelli S, Caffarelli C, Tanzilli L, Alessi C, Tomai Pitinca MD, Rossi S, Campagna MS, Nuti R. The associations of body composition and fat distribution with bone mineral density in elderly Italian men and women. J Clin Densitom. 2013;16(2):168–177. doi: 10.1016/j.jocd.2012.02.013.
    1. Lekamwasam S, Weerarathna T, Rodrigo M, Arachchi WK, Munidasa D. Association between bone mineral density, lean mass, and fat mass among healthy middle-aged premenopausal women: a cross-sectional study in southern Sri Lanka. J Bone Miner Metab. 2009;27(1):83–88. doi: 10.1007/s00774-008-0006-x.
    1. Douchi T, Yamamoto S, Oki T, Maruta K, Kuwahata R, Yamasaki H, Nagata Y. Difference in the effect of adiposity on bone density between pre- and postmenopausal women. Maturitas. 2000;34(3):261–266. doi: 10.1016/S0378-5122(99)00114-0.
    1. Douchi T, Yonehara Y, Kawamura Y, Kuwahata A, Kuwahata T, Iwamoto I. Difference in segmental lean and fat mass components between pre- and postmenopausal women. Menopause. 2007;14(5):875–878. doi: 10.1097/gme.0b013e318032b2f9.
    1. Cheng Q, Zhu YX, Zhang MX, Li LH, Du PY, Zhu MH. Age and sex effects on the association between body composition and bone mineral density in healthy Chinese men and women. Menopause. 2012;19(4):448–455. doi: 10.1097/gme.0b013e31823a40ba.
    1. Genaro PS, Pereira GA, Pinheiro MM, Szejnfeld VL, Martini LA. Influence of body composition on bone mass in postmenopausal osteoporotic women. Arch Gerontol Geriatr. 2010;51(3):295–298. doi: 10.1016/j.archger.2009.12.006.
    1. Hsu WH, Fan CH, Lin ZR, Hsu RW. Effect of basal metabolic rate on the bone mineral density in middle to old age women in Taiwan. Maturitas. 2013;76(1):70–74. doi: 10.1016/j.maturitas.2013.05.016.
    1. Wade SW, Strader C, Fitzpatrick LA, Anthony MS, O’Malley CD. Estimating prevalence of osteoporosis: examples from industrialized countries. Arch Osteoporos. 2014;9(1):182–192. doi: 10.1007/s11657-014-0182-3.
    1. Nur H, Toraman NF, Arica Z, Sarier N, Samur A. The relationship between body composition and bone mineral density in postmenopausal Turkish women. Rheumatol Int. 2013;33(3):607–612. doi: 10.1007/s00296-012-2391-7.
    1. Saarelainen J, Honkanen R, Kroger H, Tuppurainen M, Jurvelin JS, Niskanen L. Body fat distribution is associated with lumbar spine bone density independently of body weight in postmenopausal women. Maturitas. 2011;69(1):86–90. doi: 10.1016/j.maturitas.2011.02.009.
    1. Yilmaz B, Yasar E, Goktepe AS, Onder ME, Alaca R, Yazicioglu K, et al. The relationship between basal metabolic rate and femur bone mineral density in men with traumatic spinal cord injury. Arch Phys Med Rehabil. 2007;88(6):758–761. doi: 10.1016/j.apmr.2007.02.037.
    1. Quirino MA, Modesto-Filho J, de Lima Vale SH, Alves CX, Leite LD, Brandao-Neto J. Influence of basal energy expenditure and body composition on bone mineral density in postmenopausal women. Int J Gen Med. 2012;5:909–915. doi: 10.2147/IJGM.S36823.
    1. Kim JH, Choi HJ, Kim MJ, Shin CS, Cho NH. Fat mass is negatively associated with bone mineral content in Koreans. Osteoporos Int. 2012;23(7):2009–2016. doi: 10.1007/s00198-011-1808-6.
    1. Yoo HJ, Park MS, Yang SJ, Kim TN, Lim KI, Kang HJ, Song W, Baik SH, Choi DS, Choi KM. The differential relationship between fat mass and bone mineral density by gender and menopausal status. J Bone Miner Metab. 2012;30(1):47–53. doi: 10.1007/s00774-011-0283-7.
    1. Fu X, Ma X, Lu H, He W, Wang Z, Zhu S. Associations of fat mass and fat distribution with bone mineral density in pre- and postmenopausal Chinese women. Osteoporos Int. 2011;22(1):113–119. doi: 10.1007/s00198-010-1210-9.
    1. Kirchengast S, Huber J. Sex-specific associations between soft tissue body composition and bone mineral density among older adults. Ann Hum Biol. 2012;39(3):206–213. doi: 10.3109/03014460.2012.676067.
    1. Hu WW, Zhang H, Wang C, Gu JM, Yue H, Ke YH, Hu YQ, Fu WZ, Li M, Zhang ZL. Lean mass predicts hip geometry and bone mineral density in Chinese men and women and age comparisons of body composition. J Clin Densitom. 2012;15(4):434–442. doi: 10.1016/j.jocd.2012.02.004.
    1. Pouresmaeili F, Kamalidehghan B, Kamarehei M, Goh YM. A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag. 2018;14:2029–2049. doi: 10.2147/TCRM.S138000.
    1. Oh SK, Son DH, Kwon YJ, Lee HS, Lee JW. Association between basal metabolic rate and handgrip strength in older Koreans. Int J Environ Res Public Health. 2019;16(22):4377–4389. doi: 10.3390/ijerph16224377.
    1. Rikkonen T, Sirola J, Salovaara K, Tuppurainen M, Jurvelin JS, Honkanen R, Kröger H. Muscle strength and body composition are clinical indicators of osteoporosis. Calcif Tissue Int. 2012;91(2):131–138. doi: 10.1007/s00223-012-9618-1.
    1. Chen L, Nelson DR, Zhao Y, Cui Z, Johnston JA. Relationship between muscle mass and muscle strength, and the impact of comorbidities: a population-based, cross-sectional study of older adults in the United States. BMC Geriatr. 2013;13(1):74–82. doi: 10.1186/1471-2318-13-74.
    1. Cannada LK, Hill BW. Osteoporotic hip and spine fractures: a current review. Geriatr Orthop Surg Rehabil. 2014;5(4):207–212. doi: 10.1177/2151458514548579.
    1. Bano G, Dianin M, Biz C, Bedogni M, Alessi A, Bordignon A, Bizzotto M, Berizzi A, Ruggieri P, Manzato E, Sergi G. Efficacy of an interdisciplinary pathway in a first level trauma center orthopaedic unit: a prospective study of a cohort of elderly patients with hip fractures. Arch Gerontol Geriatr. 2020;86:103957. doi: 10.1016/j.archger.2019.103957.
    1. Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR, American College of Sports M American college of sports medicine position stand: physical activity and bone health. Med Sci Sports Exerc. 2004;36(11):1985–1996. doi: 10.1249/01.MSS.0000142662.21767.58.
    1. Liang MT, Bassin S, Dutto D, Braun W, Wong N, Pontello AM, et al. Bone mineral density and leg muscle strength in young Caucasian, Hispanic, and Asian women. J Clin Densitom. 2007;10(2):157–164. doi: 10.1016/j.jocd.2006.12.005.
    1. Morimoto Y, Maskarinec G, Conroy SM, Lim U, Shepherd J, Novotny R. Asian ethnicity is associated with a higher trunk/peripheral fat ratio in women and adolescent girls. J Epidemiol. 2012;22(2):130–135. doi: 10.2188/jea.JE20110100.
    1. Hunma S, Ramuth H, Miles-Chan JL, Schutz Y, Montani JP, Joonas N, Dulloo AG. Body composition-derived BMI cut-offs for overweight and obesity in Indians and Creoles of Mauritius: comparison with Caucasians. Int J Obes. 2016;40(12):1906–1914. doi: 10.1038/ijo.2016.176.
    1. Nayak S, Edwards DL, Saleh AA, Greenspan SL. Systematic review and meta-analysis of the performance of clinical risk assessment instruments for screening for osteoporosis or low bone density. Osteoporos Int. 2015;26(5):1543–1554. doi: 10.1007/s00198-015-3025-1.

Source: PubMed

3
Suscribir