A Water-Soluble Extract from Actinidia arguta Ameliorates Psoriasis-Like Skin Inflammation in Mice by Inhibition of Neutrophil Infiltration

Hyun-Keun Kim, Min Jung Bae, Seonung Lim, Wonwoo Lee, Sunyoung Kim, Hyun-Keun Kim, Min Jung Bae, Seonung Lim, Wonwoo Lee, Sunyoung Kim

Abstract

Psoriasis is a chronic inflammatory disease with complex etiology involving multiple factors. Current treatment methods are highly limited and there is a strong need for the development of safer and efficacious agents. We have previously shown that a water-soluble extract derived from hardy kiwifruit Actinidia arguta, called PG102, shows potent anti-inflammatory effects. Based on its reported biological activities, the effects of PG102 were examined on imiquimod-induced psoriasis-like skin inflammation. Our results showed that topical application of PG102 ameliorates clinical symptoms of psoriasis, reducing skin thickness and Interleukin (IL)-17A level in draining lymph nodes without causing any adverse effects. Treatment with PG102 on cytokine-stimulated HaCaT cells suppressed hyperproliferation and downregulated the expression of various chemokines and antimicrobial peptides known to induce neutrophil infiltration. These anti-inflammatory activities of PG102 were mediated via inhibition of NF-κB and signal transducer of activation (STAT) signaling. We also found decreased neutrophil chemotaxis both in vitro and in vivo. Taken together, PG102 has potential as a safe and effective reagent for the treatment of psoriasis.

Keywords: Actinidia arguta; PG102; keratinocyte; neutrophil; psoriasis.

Conflict of interest statement

M.J.B., W.L. and S.K. are the employees of ViroMed Co.Ltd. S.K. owns stocks of this company. Other authors have no conflict of interest.

Figures

Figure 1
Figure 1
PG102 is a standardized extract from Actinidia arguta. (A) Quantification of marker compounds citric acid and quinic acid; (B) Interleukin (IL)-8 bioassay and half maximal inhibitory concentration (IC50) of PG102 in HaCaT cells. Ref: reference. RT: retention time.
Figure 2
Figure 2
Topical treatment of PG102 alleviates imiquimod (IMQ)-induced psoriasis-like symptoms. (A) Experimental scheme (B) Photo of dorsal skin of Control (DMSO only), Vehicle (IMQ + DMSO), PG102 (IMQ + PG102 100 mg/kg) and Dexamethasone (IMQ + Dex 1 mg/kg) treated mice. (C) Psoriasis Area and Severity Index (PASI) scoring. (D) Hematoxylin-eosin (H&E) staining of dorsal skin (200×). (E) Interleukin (IL)-17A protein level from phorbol 12-myristate 13-acetate (PMA)/ionomycin-restimulated cells isolated from draining lymph nodes. (F) Change in body weight. Representative results from at least three independent experiments are shown (n = 3–4). The data are shown as the mean ± standard error of mean (SEM). ##p < 0.01, ####p < 0.0001 versus Control group; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 versus vehicle group.
Figure 2
Figure 2
Topical treatment of PG102 alleviates imiquimod (IMQ)-induced psoriasis-like symptoms. (A) Experimental scheme (B) Photo of dorsal skin of Control (DMSO only), Vehicle (IMQ + DMSO), PG102 (IMQ + PG102 100 mg/kg) and Dexamethasone (IMQ + Dex 1 mg/kg) treated mice. (C) Psoriasis Area and Severity Index (PASI) scoring. (D) Hematoxylin-eosin (H&E) staining of dorsal skin (200×). (E) Interleukin (IL)-17A protein level from phorbol 12-myristate 13-acetate (PMA)/ionomycin-restimulated cells isolated from draining lymph nodes. (F) Change in body weight. Representative results from at least three independent experiments are shown (n = 3–4). The data are shown as the mean ± standard error of mean (SEM). ##p < 0.01, ####p < 0.0001 versus Control group; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 versus vehicle group.
Figure 3
Figure 3
PG102 suppresses hyperproliferation of keratinocytes through STAT3 signaling. (A) WST-1 cell proliferation assay in HaCaT cells treated with M5 and PG102 for 24 h and 48 h (n = 3). (B) PG102 was treated to M5-stimulated HaCaT cells for 30 min and Western blot analysis was performed. (C) Densitometry results of Western blot. The means of three independent experiments are shown. p-STAT3 (Y705), phospho-signal transducer and activator of transcription 3 (Tyr705). p-STAT3 (S727), phospho-signal transducer and activator of transcription 3 (phospho S727). ##p < 0.01, ####p < 0.0001 versus Control group; * p < 0.05, ** p < 0.01 versus M5-only treated group. The data are shown as the mean ± standard error (SD).
Figure 3
Figure 3
PG102 suppresses hyperproliferation of keratinocytes through STAT3 signaling. (A) WST-1 cell proliferation assay in HaCaT cells treated with M5 and PG102 for 24 h and 48 h (n = 3). (B) PG102 was treated to M5-stimulated HaCaT cells for 30 min and Western blot analysis was performed. (C) Densitometry results of Western blot. The means of three independent experiments are shown. p-STAT3 (Y705), phospho-signal transducer and activator of transcription 3 (Tyr705). p-STAT3 (S727), phospho-signal transducer and activator of transcription 3 (phospho S727). ##p < 0.01, ####p < 0.0001 versus Control group; * p < 0.05, ** p < 0.01 versus M5-only treated group. The data are shown as the mean ± standard error (SD).
Figure 4
Figure 4
PG102 downregulates expression of chemokines on M5-stimulated HaCaT cells in a dose-dependent manner. (A) Real-time polymerase chain reaction (PCR) (qPCR) analysis of mRNA expression levels of chemokines after 6 h. (B) Protein levels of chemokines measured in the cultured supernatant by enzyme-linked immunosorbent assay (ELISA) after 24 h. CXCL, chemokine (C-X-C motif) ligand. ####p < 0.001 versus negative control group; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 versus M5-only treated group.
Figure 5
Figure 5
PG102 downregulates expression of antimicrobial peptides on M5-stimulated HaCaT cells in a dose-dependent manner. (A) Real-time PCR (qPCR) analysis of mRNA expression levels of antimicrobial peptides after 24 h. (B) Protein levels of antimicrobial peptides measured in the cultured supernatant by ELISA after 48 h. BD-2, beta-defensin 2; S100, S100 calcium binding protein. ####p < 0.0001 versus negative control group; * p < 0.05, **** p < 0.0001 versus M5-only treated group.
Figure 6
Figure 6
PG102 inhibits NF-κB and STAT1 signaling in HaCaT cells. (A) Western blot results of corresponding proteins after treatment with M5 and PG102 for 30 min. (B) Densitometry of Western blot. The means of three experiments are shown. ###p < 0.001, ####p < 0.0001 versus Control group; * p < 0.05 versus M5-only treated group.
Figure 7
Figure 7
PG102 suppresses neutrophil chemotaxis in vitro and in vivo. (A) Chemotaxis assay of differentiated HL-60 (dHL-60) cells. (B) IHC staining for Ly6G in dorsal skin of control, vehicle, PG102 (100 mg/kg), Dex (1 mg/kg) treated mice. (C) Quantification of Ly6G+ cells per five random high power fields (400X). (D) Real-time qPCR analysis of mRNA expression levels of antimicrobial peptides and chemokines in dorsal skin of mice (n = 3–4). FBS, fetal bovine serum; Dex, dexamethasone; M5, mixture of 5 cytokines. The data are shown as the mean ± SEM. ####p < 0.0001 versus Control group; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 versus vehicle group.

References

    1. Greb J.E., Goldminz A.M., Elder J.T., Lebwohl M.G., Gladman D.D., Wu J.J., Mehta N.N., Finlay A.Y., Gottlieb A.B. Psoriasis. Nat. Rev. Dis. Primers. 2016;2:16082. doi: 10.1038/nrdp.2016.82.
    1. Boehncke W.H., Schon M.P. Psoriasis. Lancet. 2015;386:983–994. doi: 10.1016/S0140-6736(14)61909-7.
    1. Gottlieb A.B., Chao C., Dann F. Psoriasis comorbidities. J. Dermatol. Treat. 2008;19:5–21. doi: 10.1080/09546630701364768.
    1. De Korte J., Sprangers M.A., Mombers F.M., Bos J.D. Quality of life in patients with psoriasis: A systematic literature review. J. Investig. Dermatol. Symp. Proc. 2004;9:140–147. doi: 10.1046/j.1087-0024.2003.09110.x.
    1. Griffiths C.E.M., van der Walt J.M., Ashcroft D.M., Flohr C., Naldi L., Nijsten T., Augustin M. The global state of psoriasis disease epidemiology: A workshop report. Br. J. Dermatol. 2017;177:e4–e7. doi: 10.1111/bjd.15610.
    1. Lande R., Gregorio J., Facchinetti V., Chatterjee B., Wang Y.H., Homey B., Cao W., Wang Y.H., Su B., Nestle F.O., et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449:564–569. doi: 10.1038/nature06116.
    1. Fitch E., Harper E., Skorcheva I., Kurtz S.E., Blauvelt A. Pathophysiology of psoriasis: Recent advances on IL-23 and Th17 cytokines. Curr. Rheumatol. Rep. 2007;9:461–467. doi: 10.1007/s11926-007-0075-1.
    1. Rohrl J., Yang D., Oppenheim J.J., Hehlgans T. Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2. J. Immunol. 2010;184:6688–6694. doi: 10.4049/jimmunol.0903984.
    1. Lee Y., Jang S., Min J.K., Lee K., Sohn K.C., Lim J.S., Im M., Lee H.E., Seo Y.J., Kim C.D., et al. S100a8 and s100a9 are messengers in the crosstalk between epidermis and dermis modulating a psoriatic milieu in human skin. Biochem. Biophys. Res. Commun. 2012;423:647–653. doi: 10.1016/j.bbrc.2012.05.162.
    1. Hu S.C.-S., Yu H.S., Yen F.L., Lin C.L., Chen G.-S., Lan C.-C.E. Neutrophil extracellular trap formation is increased in psoriasis and induces human beta-defensin-2 production in epidermal keratinocytes. Sci. Rep. 2016;6:31119. doi: 10.1038/srep31119.
    1. Uva L., Miguel D., Pinheiro C., Antunes J., Cruz D., Ferreira J., Filipe P. Mechanisms of action of topical corticosteroids in psoriasis. Int. J. Endocrinol. 2012;2012:561018. doi: 10.1155/2012/561018.
    1. Carrascosa J.M., van Doorn M.B., Lahfa M., Nestle F.O., Jullien D., Prinz J.C. Clinical relevance of immunogenicity of biologics in psoriasis: Implications for treatment strategies. J. Eur. Acad. Dermatol. Venereol. 2014;28:1424–1430. doi: 10.1111/jdv.12549.
    1. Matich A.J., Young H., Allen J.M., Wang M.Y., Fielder S., McNeilage M.A., MacRae E.A. Actinidia arguta: Volatile compounds in fruit and flowers. Phytochemistry. 2003;63:285–301. doi: 10.1016/S0031-9422(03)00142-0.
    1. Leontowicz H., Leontowicz M., Latocha P., Jesion I., Park Y.S., Katrich E., Barasch D., Nemirovski A., Gorinstein S. Bioactivity and nutritional properties of hardy kiwi fruit actinidia arguta in comparison with actinidia deliciosa ‘hayward’ and actinidia eriantha ‘bidan’. Food Chem. 2016;196:281–291. doi: 10.1016/j.foodchem.2015.08.127.
    1. Park E.J., Kim B., Eo H., Park K., Kim Y., Lee H.J., Son M., Chang Y.S., Cho S.H., Kim S., et al. Control of igE and selective T(H)1 and T(H)2 cytokines by PG102 isolated from actinidia arguta. J. Allergy Clin. Immunol. 2005;116:1151–1157. doi: 10.1016/j.jaci.2005.07.024.
    1. Kim D., Kim S.H., Park E.J., Kang C.Y., Cho S.H., Kim S. Anti-allergic effects of PG102, a water-soluble extract prepared from actinidia arguta, in a murine ovalbumin-induced asthma model. Clin. Exp. Allergy. 2009;39:280–289. doi: 10.1111/j.1365-2222.2008.03124.x.
    1. Bae M.J., Lim S., Lee D.S., Ko K.R., Lee W., Kim S. Water soluble extracts from actinidia arguta, PG102, attenuates house dust mite-induced murine atopic dermatitis by inhibiting the mTOR pathway with Treg generation. J. Ethnopharmacol. 2016;193:96–106. doi: 10.1016/j.jep.2016.08.004.
    1. Kim S.H., Kim S., Lee S.H., Park H.W., Chang Y.S., Min K.U., Cho S.H. The effects of PG102, a water-soluble extract from actinidia arguta, on serum total ige levels: A double-blind, randomized, placebo-controlled exploratory clinical study. Eur. J. Nutr. 2011;50:523–529. doi: 10.1007/s00394-010-0159-y.
    1. Link A., Vogt T.K., Favre S., Britschgi M.R., Acha-Orbea H., Hinz B., Cyster J.G., Luther S.A. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive t cells. Nat. Immunol. 2007;8:1255–1265. doi: 10.1038/ni1513.
    1. Millius A., Weiner O.D. Chemotaxis in neutrophil-like hl-60 cells. Methods Mol. Biol. 2009;571:167–177.
    1. Gillitzer R., Berger R., Mielke V., Muller C., Wolff K., Stingl G. Upper keratinocytes of psoriatic skin lesions express high levels of NAP-1/IL-8 mrna in situ. J. Investig. Dermatol. 1991;97:73–79. doi: 10.1111/1523-1747.ep12478128.
    1. Guilloteau K., Paris I., Pedretti N., Boniface K., Juchaux F., Huguier V., Guillet G., Bernard F.X., Lecron J.C., Morel F. Skin inflammation induced by the synergistic action of IL-17a, IL-22, oncostatin M, IL-1{alpha}, and TNF-{alpha} recapitulates some features of psoriasis. J. Immunol. 2010;184:5263–5270. doi: 10.4049/jimmunol.0902464.
    1. Van der Fits L., Mourits S., Voerman J.S., Kant M., Boon L., Laman J.D., Cornelissen F., Mus A.M., Florencia E., Prens E.P., et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 Axis. J. Immunol. 2009;182:5836–5845. doi: 10.4049/jimmunol.0802999.
    1. Orecchia V., Regis G., Tassone B., Valenti C., Avalle L., Saoncella S., Calautti E., Poli V. Constitutive stat3 activation in epidermal keratinocytes enhances cell clonogenicity and favours spontaneous immortalization by opposing differentiation and senescence checkpoints. Exp. Dermatol. 2015;24:29–34. doi: 10.1111/exd.12585.
    1. Ha H., Debnath B., Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 2017;7:1543–1588. doi: 10.7150/thno.15625.
    1. Schonthaler H.B., Guinea-Viniegra J., Wculek S.K., Ruppen I., Ximenez-Embun P., Guio-Carrion A., Navarro R., Hogg N., Ashman K., Wagner E.F. S100a8–S100a9 protein complex mediates psoriasis by regulating the expression of complement factor C3. Immunity. 2013;39:1171–1181. doi: 10.1016/j.immuni.2013.11.011.
    1. Wehkamp J., Harder J., Wehkamp K., Wehkamp-von Meissner B., Schlee M., Enders C., Sonnenborn U., Nuding S., Bengmark S., Fellermann K., et al. Nf-kappab- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by escherichia coli nissle 1917: A novel effect of a probiotic bacterium. Infect. Immun. 2004;72:5750–5758. doi: 10.1128/IAI.72.10.5750-5758.2004.
    1. Hsu K., Chung Y.M., Endoh Y., Geczy C.L. Tlr9 ligands induce S100a8 in macrophages via a stat3-dependent pathway which requires IL-10 and PGE2. PLoS ONE. 2014;9:e103629. doi: 10.1371/journal.pone.0103629.
    1. Park E.J., Park K.C., Eo H., Seo J., Son M., Kim K.H., Chang Y.S., Cho S.H., Min K.U., Jin M., et al. Suppression of spontaneous dermatitis in NC/Nga murine model by PG102 isolated from actinidia arguta. J. Investig. Dermatol. 2007;127:1154–1160. doi: 10.1038/sj.jid.5700658.
    1. Kim D., Choi J., Kim M.J., Kim S.H., Cho S.H., Kim S. Reconstitution of anti-allergic activities of PG102 derived from actinidia arguta by combining synthetic chemical compounds. Exp. Biol. Med. 2013;238:631–640. doi: 10.1177/1535370213489455.
    1. Wolf R., Orion E., Ruocco E., Ruocco V. Abnormal epidermal barrier in the pathogenesis of psoriasis. Clin. Dermatol. 2012;30:323–328. doi: 10.1016/j.clindermatol.2011.08.022.
    1. Liang W., Lin Z., Zhang L., Qin X., Zhang Y., Sun L. Calcipotriol inhibits proliferation of human keratinocytes by downregulating stat1 and stat3 signaling. J. Investig. Med. 2017;65:376–381. doi: 10.1136/jim-2016-000176.
    1. Delgado-Rizo V., Martinez-Guzman M.A., Iniguez-Gutierrez L., Garcia-Orozco A., Alvarado-Navarro A., Fafutis-Morris M. Neutrophil extracellular traps and its implications in inflammation: An overview. Front. Immunol. 2017;8:81. doi: 10.3389/fimmu.2017.00081.
    1. Reich K., Papp K.A., Matheson R.T., Tu J.H., Bissonnette R., Bourcier M., Gratton D., Kunynetz R.A., Poulin Y., Rosoph L.A., et al. Evidence that a neutrophil-keratinocyte crosstalk is an early target of IL-17a inhibition in psoriasis. Exp. Dermatol. 2015;24:529–535. doi: 10.1111/exd.12710.
    1. Toichi E., Tachibana T., Furukawa F. Rapid improvement of psoriasis vulgaris during drug-induced agranulocytosis. J. Am. Acad. Dermatol. 2000;43:391–395. doi: 10.1067/mjd.2000.103264.
    1. Keijsers R.R.M.C., Hendriks A.G.M., van Erp P.E.J., van Cranenbroek B., van de Kerkhof P.C.M., Koenen H.J.P.M., Joosten I. In vivo induction of cutaneous inflammation results in the accumulation of extracellular trap-forming neutrophils expressing rorgammat and IL-17. J. Investig. Dermatol. 2014;134:1276–1284. doi: 10.1038/jid.2013.526.
    1. Richmond A. Nf-kappa B, chemokine gene transcription and tumour growth. Nat. Rev. Immunol. 2002;2:664–674. doi: 10.1038/nri887.
    1. Albanesi C., Fairchild H.R., Madonna S., Scarponi C., De Pita O., Leung D.Y., Howell M.D. IL-4 and IL-13 negatively regulate TNF-alpha- and IFN-gamma-induced beta-defensin expression through stat-6, suppressor of cytokine signaling (socs)-1, and socs-3. J. Immunol. 2007;179:984–992. doi: 10.4049/jimmunol.179.2.984.

Source: PubMed

3
Suscribir