CAD/CAM Resin-Based Composites for Use in Long-Term Temporary Fixed Dental Prostheses

Franziska Hensel, Andreas Koenig, Hans-Martin Doerfler, Florian Fuchs, Martin Rosentritt, Sebastian Hahnel, Franziska Hensel, Andreas Koenig, Hans-Martin Doerfler, Florian Fuchs, Martin Rosentritt, Sebastian Hahnel

Abstract

The aim of this in vitro study was to analyse the performance of CAD/CAM resin-based composites for the fabrication of long-term temporary fixed dental prostheses (FDP) and to compare it to other commercially available alternative materials regarding its long-term stability. Four CAD/CAM materials [Structur CAD (SC), VITA CAD-Temp (CT), Grandio disc (GD), and Lava Esthetic (LE)] and two direct RBCs [(Structur 3 (S3) and LuxaCrown (LC)] were used to fabricate three-unit FDPs. 10/20 FDPs were subjected to thermal cycling and mechanical loading by chewing simulation and 10/20 FDPs were stored in distilled water. Two FDPs of each material were forwarded to additional image diagnostics prior and after chewing simulation. Fracture loads were measured and data were statistically analysed. SC is suitable for use as a long-term temporary (two years) three-unit FDP. In comparison to CT, SC featured significantly higher breaking forces (SC > 800 N; CT < 600 N) and the surface wear of the antagonists was (significantly) lower and the abrasion of the FDP was similar. The high breaking forces (1100-1327 N) of GD and the small difference compared to LE regarding flexural strength showed that the material might be used for the fabrication of three-unit FDPs. With the exception of S3, all analysed direct or indirect materials are suitable for the fabrication of temporary FDPs.

Keywords: RBC; chewing simulation; confocal laser scanning microscope; dimethacrylats; micro X-ray computer tomograph; surface wear; three-unit FDP.

Conflict of interest statement

The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Flowchart of the test program with imaging techniques [micro X-ray computer tomograph (µXCT), confocal laser scanning microscope (CLSM, 2D), 3D scanner (3D-LS, 3D)] and universal testing machine.
Figure 2
Figure 2
Failure loads without (10 samples per material) and after simultaneous chewing simulation and thermocycling (CS + TC) (8 samples per material; exception: S3; only four FDPs were forwarded to fracture analysis due to a 50% failure rate in chewing simulation).
Figure 3
Figure 3
Example of a surface match analysis with GOM Inspect software, v. 2020 (GOM GmbH, Braunschweig, Germany).
Figure 4
Figure 4
Increasing surface wear of the enstatite antagonists.
Figure 5
Figure 5
µXCT sectional images from the centre of the three-unit FDPs, each with the total porosity (measured on a region of interest (ROI) 6 mm × 4 mm × 4.2 mm from the centre of the restoration).
Figure 5
Figure 5
µXCT sectional images from the centre of the three-unit FDPs, each with the total porosity (measured on a region of interest (ROI) 6 mm × 4 mm × 4.2 mm from the centre of the restoration).

References

    1. Burns D.R., Beck D.A., Nelson S.K. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: Report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J. Prosthet. Dent. 2003;90:474–497. doi: 10.1016/S0022-3913(03)00259-2.
    1. Ireland M.F., Dixon D.L., Breeding L.C., Ramp M.H. In vitro mechanical property comparison of four resins used for fabrication of provisional fixed restorations. J. Prosthet. Dent. 1998;80:158–162. doi: 10.1016/S0022-3913(98)70104-0.
    1. Kaiser D.A., Cavazos E. Temporization techniques in fixed prosthodontics. Dent. Clin. N. Am. 1985;29:403–412.
    1. Lang R., Rosentritt M., Leibrock A., Behr M., Handel G. Colour stability of provisional crown and bridge restoration materials. Br. Dent. J. 1998;185:468–471. doi: 10.1038/sj.bdj.4809839.
    1. Edelhoff D., Beuer F., Schweiger J., Brix O., Stimmelmayr M., Guth J.-F. CAD/CAM-generated high-density polymer restorations for the pretreatment of complex cases: A case report. Quintessence Int. 2012;43:457–467.
    1. Pietrobon N., Lehner C.R., Schärer P. Langzeitprovisorien in der Kronen-Brücken-Prothetik. Konstruktionsprinzipien, Materialwahl, und praktisches Vorgehen. [Long-term temporary dentures in crown and bridge prosthesis. The design principles, choice of material and practical procedure] Schweiz. Mon. Zahnmed. 1996;106:236–247.
    1. McLean J.W. The failed restoration: Causes of failure and how to prevent them. Int. Dent. J. 1990;40:354–358.
    1. Lang R., Rosentritt M., Handel G. Bruchfestigkeit von dreigliedrigen Brückenprovisorien-eine In-vitro-Studie. [(accessed on 19 August 2021)];DZZ. 2005 12:665–668. Available online:
    1. Alt V., Hannig M., Wöstmann B., Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent. Mater. 2011;27:339–347. doi: 10.1016/j.dental.2010.11.012.
    1. Balkenhol M., Mautner M.C., Ferger P., Wöstmann B. Mechanical properties of provisional crown and bridge materials: Chemical-curing versus dual-curing systems. J. Dent. 2008;36:15–20. doi: 10.1016/j.jdent.2007.10.001.
    1. Mainjot A.K., Dupont N.M., Oudkerk J.C., Dewael T.Y., Sadoun M.J. From Artisanal to CAD-CAM Blocks: State of the Art of Indirect Composites. J. Dent. Res. 2016;95:487–495. doi: 10.1177/0022034516634286.
    1. Magne P., Knezevic A. Influence of overlay restorative materials and load cusps on the fatigue resistance of endodontically treated molars. Quintessence Int. 2009;40:729–737.
    1. Ionescu A.C., Hahnel S., König A., Brambilla E. Resin composite blocks for dental CAD/CAM applications reduce biofilm formation in vitro. Dent. Mater. 2020;36:603–616. doi: 10.1016/j.dental.2020.03.016.
    1. Rosentritt M., Kieschnick A., Stawarczyk B. Werkstoffkunde-Kompendium “Polymerbasierte CAD/CAM Werkstoffe”: Moderne Dentale Materialen im Praktischen Arbeitsalltag. 2018. [(accessed on 3 October 2021)]. Available online:
    1. Alamoush R.A., Silikas N., Salim N.A., Al-Nasrawi S., Satterthwaite J.D. Effect of the Composition of CAD/CAM Composite Blocks on Mechanical Properties. Biomed. Res. Int. 2018;2018:4893143. doi: 10.1155/2018/4893143.
    1. Martin R., Nicoleta I., Ulrich L., editors. Werkstoffkunde in der Zahnmedizin. Thieme (Verlag); New York, NY, USA: 2018. Moderne Materialien und Technologien: 442 Abbildungen; p. 214.
    1. Rauch A., König A. Indirekte Komposite aus klinischer und werkstoffkundlicher Sicht. Quintessenz Zahnmed. 2020;71:116–126.
    1. Zhi L., Bortolotto T., Krejci I. Comparative in vitro wear resistance of CAD/CAM composite resin and ceramic materials. J. Prosthet. Dent. 2016;115:199–202. doi: 10.1016/j.prosdent.2015.07.011.
    1. Stawarczyk B., Liebermann A., Eichberger M., Güth J.-F. Evaluation of mechanical and optical behavior of current esthetic dental restorative CAD/CAM composites. J. Mech. Behav. Biomed. Mater. 2015;55:1–11. doi: 10.1016/j.jmbbm.2015.10.004.
    1. Zimmermann M., Ender A., Attin T., Mehl A. Fracture load of three-unit full-contour fixed dental prostheses fabricated with subtractive and additive CAD/CAM technology. Clin. Oral Investig. 2020;24:1035–1042. doi: 10.1007/s00784-019-03000-0.
    1. Coldea A., Swain M.V., Thiel N. In-vitro strength degradation of dental ceramics and novel PICN material by sharp indentation. J. Mech. Behav. Biomed. Mater. 2013;26:34–42. doi: 10.1016/j.jmbbm.2013.05.004.
    1. Mörmann W.H., Stawarczyk B., Ender A., Sener B., Attin T., Mehl A. Wear characteristics of current aesthetic dental restorative CAD/CAM materials: Two-body wear, gloss retention, roughness and Martens hardness. J. Mech. Behav. Biomed. Mater. 2013;20:113–125. doi: 10.1016/j.jmbbm.2013.01.003.
    1. Stawarczyk B., Sener B., Trottmann A., Roos M., Ozcan M., Hämmerle C.H.F. Discoloration of manually fabricated resins and industrially fabricated CAD/CAM blocks versus glass-ceramic: Effect of storage media, duration, and subsequent polishing. Dent. Mater. J. 2012;31:377–383. doi: 10.4012/dmj.2011-238.
    1. Della Bona A., Anusavice K.J., Mecholsky J.J., Jr. Failure analysis of resin composite bonded to ceramic. Dent. Mater. 2003;19:693–699. doi: 10.1016/S0109-5641(03)00015-0.
    1. Ertaş E., Güler A.U., Yücel A.C., Köprülü H., Güler E. Color stability of resin composites after immersion in different drinks. Dent. Mater. J. 2006;25:371–376. doi: 10.4012/dmj.25.371.
    1. Augusto M.G., Andrade G.S., Caneppele T.M.F., Borges A.B., Torres C.R.G. Nanofilled bis-acryl composite resin materials: Is it necessary to polish? J. Prosthet. Dent. 2020;124:e1–e494. doi: 10.1016/j.prosdent.2020.03.015.
    1. Mangal M. Ph.D. Dissertation. Erlangen-Nürnberg: Friedrich-Alexander-Universität (FAU); Erlangen, Germany: 2014. Polish Retention and Related Material Parameters of Provisional Crown and Bridge Materials.
    1. Sulaiman T. Mechanical and Optical Properties of a Novel Bisacryl ‘Semi-Permanent’ Restorative Material. [(accessed on 10 July 2021)]. Available online:
    1. Ayşe A., Elçin S. Effects of Different Storage Conditions on Mechanical Properties of CAD/CAM Restorative Materials. Odovtos Int. J. Dent. Sci. 2020;22:18.
    1. Başak S.S., Özmen M.F., Sağsöz Ö., Bayindir F. Effect of thermo-cycling on microhardness of CAD-CAM provisional materials. Int. J. Appl. Dent. Sci. 2020;6:254–257. doi: 10.22271/oral.2020.v6.i4d.1075.
    1. Niem T., Youssef N., Wöstmann B. Influence of accelerated ageing on the physical properties of CAD/CAM restorative materials. Clin. Oral Investig. 2020;24:2415–2425. doi: 10.1007/s00784-019-03101-w.
    1. Theelke B., Schechner G. Monolithische Restauration aus Zirkoniumoxid: Klinisch Sicher. 2020. [(accessed on 27 June 2021)]. Available online:
    1. Abdulmohsen B., Parker S., Braden M., Patel M.P. A study to investigate and compare the physicomechanical properties of experimental and commercial temporary crown and bridge materials. Dent. Mater. 2016;32:200–210. doi: 10.1016/j.dental.2015.11.025.
    1. Koenig A. Analysis of air voids in cementitious materials using micro X-ray computed tomography (XCT) Constr. Build. Mater. 2020;244:118313. doi: 10.1016/j.conbuildmat.2020.118313.
    1. Hancock B.C., Zografi G. The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm. Res. 1994;11:471–477. doi: 10.1023/A:1018941810744.
    1. Waltimo A., Könönen M. A novel bite force recorder and maximal isometric bite force values for healthy young adults. Scand. J. Dent. Res. 1993;101:171–175. doi: 10.1111/j.1600-0722.1993.tb01658.x.
    1. Koenig A., Schmidtke J., Schmohl L., Schneider-Feyrer S., Rosentritt M., Hoelzig H., Kloess G., Vejjasilpa K., Schulz-Siegmund M., Fuchs F., et al. Characterisation of the Filler Fraction in CAD/CAM Resin-Based Composites. Materials. 2021;14:1986. doi: 10.3390/ma14081986.
    1. Hedayat A., Nagy N., Packota G., Monteith J., Allen D., Wysokinski T., Zhu N. Synchrotron-radiation-based X-ray micro-computed tomography reveals dental bur debris under dental composite restorations. J. Synchrotron Radiat. 2016;23:777–782. doi: 10.1107/S1600577516002198.

Source: PubMed

3
Suscribir