Genetic variants associated with longitudinal changes in brain structure across the lifespan

Rachel M Brouwer, Marieke Klein, Katrina L Grasby, Hugo G Schnack, Neda Jahanshad, Jalmar Teeuw, Sophia I Thomopoulos, Emma Sprooten, Carol E Franz, Nitin Gogtay, William S Kremen, Matthew S Panizzon, Loes M Olde Loohuis, Christopher D Whelan, Moji Aghajani, Clara Alloza, Dag Alnæs, Eric Artiges, Rosa Ayesa-Arriola, Gareth J Barker, Mark E Bastin, Elisabet Blok, Erlend Bøen, Isabella A Breukelaar, Joanna K Bright, Elizabeth E L Buimer, Robin Bülow, Dara M Cannon, Simone Ciufolini, Nicolas A Crossley, Christienne G Damatac, Paola Dazzan, Casper L de Mol, Sonja M C de Zwarte, Sylvane Desrivières, Covadonga M Díaz-Caneja, Nhat Trung Doan, Katharina Dohm, Juliane H Fröhner, Janik Goltermann, Antoine Grigis, Dominik Grotegerd, Laura K M Han, Mathew A Harris, Catharina A Hartman, Sarah J Heany, Walter Heindel, Dirk J Heslenfeld, Sarah Hohmann, Bernd Ittermann, Philip R Jansen, Joost Janssen, Tianye Jia, Jiyang Jiang, Christiane Jockwitz, Temmuz Karali, Daniel Keeser, Martijn G J C Koevoets, Rhoshel K Lenroot, Berend Malchow, René C W Mandl, Vicente Medel, Susanne Meinert, Catherine A Morgan, Thomas W Mühleisen, Leila Nabulsi, Nils Opel, Víctor Ortiz-García de la Foz, Bronwyn J Overs, Marie-Laure Paillère Martinot, Ronny Redlich, Tiago Reis Marques, Jonathan Repple, Gloria Roberts, Gennady V Roshchupkin, Nikita Setiaman, Elena Shumskaya, Frederike Stein, Gustavo Sudre, Shun Takahashi, Anbupalam Thalamuthu, Diana Tordesillas-Gutiérrez, Aad van der Lugt, Neeltje E M van Haren, Joanna M Wardlaw, Wei Wen, Henk-Jan Westeneng, Katharina Wittfeld, Alyssa H Zhu, Andre Zugman, Nicola J Armstrong, Gaia Bonfiglio, Janita Bralten, Shareefa Dalvie, Gail Davies, Marta Di Forti, Linda Ding, Gary Donohoe, Andreas J Forstner, Javier Gonzalez-Peñas, Joao P O F T Guimaraes, Georg Homuth, Jouke-Jan Hottenga, Maria J Knol, John B J Kwok, Stephanie Le Hellard, Karen A Mather, Yuri Milaneschi, Derek W Morris, Markus M Nöthen, Sergi Papiol, Marcella Rietschel, Marcos L Santoro, Vidar M Steen, Jason L Stein, Fabian Streit, Rick M Tankard, Alexander Teumer, Dennis van 't Ent, Dennis van der Meer, Kristel R van Eijk, Evangelos Vassos, Javier Vázquez-Bourgon, Stephanie H Witt, IMAGEN Consortium, Hieab H H Adams, Ingrid Agartz, David Ames, Katrin Amunts, Ole A Andreassen, Celso Arango, Tobias Banaschewski, Bernhard T Baune, Sintia I Belangero, Arun L W Bokde, Dorret I Boomsma, Rodrigo A Bressan, Henry Brodaty, Jan K Buitelaar, Wiepke Cahn, Svenja Caspers, Sven Cichon, Benedicto Crespo-Facorro, Simon R Cox, Udo Dannlowski, Torbjørn Elvsåshagen, Thomas Espeseth, Peter G Falkai, Simon E Fisher, Herta Flor, Janice M Fullerton, Hugh Garavan, Penny A Gowland, Hans J Grabe, Tim Hahn, Andreas Heinz, Manon Hillegers, Jacqueline Hoare, Pieter J Hoekstra, Mohammad A Ikram, Andrea P Jackowski, Andreas Jansen, Erik G Jönsson, Rene S Kahn, Tilo Kircher, Mayuresh S Korgaonkar, Axel Krug, Herve Lemaitre, Ulrik F Malt, Jean-Luc Martinot, Colm McDonald, Philip B Mitchell, Ryan L Muetzel, Robin M Murray, Frauke Nees, Igor Nenadić, Jaap Oosterlaan, Roel A Ophoff, Pedro M Pan, Brenda W J H Penninx, Luise Poustka, Perminder S Sachdev, Giovanni A Salum, Peter R Schofield, Gunter Schumann, Philip Shaw, Kang Sim, Michael N Smolka, Dan J Stein, Julian N Trollor, Leonard H van den Berg, Jan H Veldink, Henrik Walter, Lars T Westlye, Robert Whelan, Tonya White, Margaret J Wright, Sarah E Medland, Barbara Franke, Paul M Thompson, Hilleke E Hulshoff Pol, Rüdiger Brühl, Dimitri Papadopoulos Orfanos, Tomáš Paus, Sabina Millenet, Rachel M Brouwer, Marieke Klein, Katrina L Grasby, Hugo G Schnack, Neda Jahanshad, Jalmar Teeuw, Sophia I Thomopoulos, Emma Sprooten, Carol E Franz, Nitin Gogtay, William S Kremen, Matthew S Panizzon, Loes M Olde Loohuis, Christopher D Whelan, Moji Aghajani, Clara Alloza, Dag Alnæs, Eric Artiges, Rosa Ayesa-Arriola, Gareth J Barker, Mark E Bastin, Elisabet Blok, Erlend Bøen, Isabella A Breukelaar, Joanna K Bright, Elizabeth E L Buimer, Robin Bülow, Dara M Cannon, Simone Ciufolini, Nicolas A Crossley, Christienne G Damatac, Paola Dazzan, Casper L de Mol, Sonja M C de Zwarte, Sylvane Desrivières, Covadonga M Díaz-Caneja, Nhat Trung Doan, Katharina Dohm, Juliane H Fröhner, Janik Goltermann, Antoine Grigis, Dominik Grotegerd, Laura K M Han, Mathew A Harris, Catharina A Hartman, Sarah J Heany, Walter Heindel, Dirk J Heslenfeld, Sarah Hohmann, Bernd Ittermann, Philip R Jansen, Joost Janssen, Tianye Jia, Jiyang Jiang, Christiane Jockwitz, Temmuz Karali, Daniel Keeser, Martijn G J C Koevoets, Rhoshel K Lenroot, Berend Malchow, René C W Mandl, Vicente Medel, Susanne Meinert, Catherine A Morgan, Thomas W Mühleisen, Leila Nabulsi, Nils Opel, Víctor Ortiz-García de la Foz, Bronwyn J Overs, Marie-Laure Paillère Martinot, Ronny Redlich, Tiago Reis Marques, Jonathan Repple, Gloria Roberts, Gennady V Roshchupkin, Nikita Setiaman, Elena Shumskaya, Frederike Stein, Gustavo Sudre, Shun Takahashi, Anbupalam Thalamuthu, Diana Tordesillas-Gutiérrez, Aad van der Lugt, Neeltje E M van Haren, Joanna M Wardlaw, Wei Wen, Henk-Jan Westeneng, Katharina Wittfeld, Alyssa H Zhu, Andre Zugman, Nicola J Armstrong, Gaia Bonfiglio, Janita Bralten, Shareefa Dalvie, Gail Davies, Marta Di Forti, Linda Ding, Gary Donohoe, Andreas J Forstner, Javier Gonzalez-Peñas, Joao P O F T Guimaraes, Georg Homuth, Jouke-Jan Hottenga, Maria J Knol, John B J Kwok, Stephanie Le Hellard, Karen A Mather, Yuri Milaneschi, Derek W Morris, Markus M Nöthen, Sergi Papiol, Marcella Rietschel, Marcos L Santoro, Vidar M Steen, Jason L Stein, Fabian Streit, Rick M Tankard, Alexander Teumer, Dennis van 't Ent, Dennis van der Meer, Kristel R van Eijk, Evangelos Vassos, Javier Vázquez-Bourgon, Stephanie H Witt, IMAGEN Consortium, Hieab H H Adams, Ingrid Agartz, David Ames, Katrin Amunts, Ole A Andreassen, Celso Arango, Tobias Banaschewski, Bernhard T Baune, Sintia I Belangero, Arun L W Bokde, Dorret I Boomsma, Rodrigo A Bressan, Henry Brodaty, Jan K Buitelaar, Wiepke Cahn, Svenja Caspers, Sven Cichon, Benedicto Crespo-Facorro, Simon R Cox, Udo Dannlowski, Torbjørn Elvsåshagen, Thomas Espeseth, Peter G Falkai, Simon E Fisher, Herta Flor, Janice M Fullerton, Hugh Garavan, Penny A Gowland, Hans J Grabe, Tim Hahn, Andreas Heinz, Manon Hillegers, Jacqueline Hoare, Pieter J Hoekstra, Mohammad A Ikram, Andrea P Jackowski, Andreas Jansen, Erik G Jönsson, Rene S Kahn, Tilo Kircher, Mayuresh S Korgaonkar, Axel Krug, Herve Lemaitre, Ulrik F Malt, Jean-Luc Martinot, Colm McDonald, Philip B Mitchell, Ryan L Muetzel, Robin M Murray, Frauke Nees, Igor Nenadić, Jaap Oosterlaan, Roel A Ophoff, Pedro M Pan, Brenda W J H Penninx, Luise Poustka, Perminder S Sachdev, Giovanni A Salum, Peter R Schofield, Gunter Schumann, Philip Shaw, Kang Sim, Michael N Smolka, Dan J Stein, Julian N Trollor, Leonard H van den Berg, Jan H Veldink, Henrik Walter, Lars T Westlye, Robert Whelan, Tonya White, Margaret J Wright, Sarah E Medland, Barbara Franke, Paul M Thompson, Hilleke E Hulshoff Pol, Rüdiger Brühl, Dimitri Papadopoulos Orfanos, Tomáš Paus, Sabina Millenet

Abstract

Human brain structure changes throughout the lifespan. Altered brain growth or rates of decline are implicated in a vast range of psychiatric, developmental and neurodegenerative diseases. In this study, we identified common genetic variants that affect rates of brain growth or atrophy in what is, to our knowledge, the first genome-wide association meta-analysis of changes in brain morphology across the lifespan. Longitudinal magnetic resonance imaging data from 15,640 individuals were used to compute rates of change for 15 brain structures. The most robustly identified genes GPR139, DACH1 and APOE are associated with metabolic processes. We demonstrate global genetic overlap with depression, schizophrenia, cognitive functioning, insomnia, height, body mass index and smoking. Gene set findings implicate both early brain development and neurodegenerative processes in the rates of brain changes. Identifying variants involved in structural brain changes may help to determine biological pathways underlying optimal and dysfunctional brain development and aging.

Trial registration: ClinicalTrials.gov NCT02534363 NCT02305832.

Conflict of interest statement

Competing interests:

Other authors declare no conflict of interest.

© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.

Figures

Extended Data Fig. 1. Demographics and analysis
Extended Data Fig. 1. Demographics and analysis
Overview of demographics (left). Per cohort, an age distribution is displayed, based on mean and standard deviation of the age at baseline. Cohorts of European ancestry are displayed in green, non-European cohorts are displayed in yellow. On the right, the total number of included subjects is displayed and a pie-chart of the distribution of diagnostic groups (pink) and subjects not belonging to diagnostic groups - often healthy subjects (aqua). Overview of analysis pipeline (right).
Extended Data Fig. 2. Correlations between change…
Extended Data Fig. 2. Correlations between change rates
Pearson correlations between rates of change and between baseline intracranial volume and rates of change in the largest adolescent cohort (top, N = 1068) and the largest cohort in older age (bottom, N = 624) in phase 1. The size of the correlations is displayed by color and size of the circles.
Figure 1:
Figure 1:
Phenotypic brain changes throughout the lifespan. Visualization of growth and decline of brain structures throughout the lifespan. The subcortical structures are shown in exploded view.
Figure 2:
Figure 2:
Annual rates of change Δ per cohort for each structure (a-o). The estimated trajectories with 95% confidence intervals (in green) are displayed in the top row. Mean values of individual cohorts are displayed as points, with error bars representing standard errors displayed in grey. The size of the points represents the relative size of the cohorts, total sample size N=15640. Means and standard deviations are based on raw data – no covariates were included. Cohorts that were added in phase 2 are displayed in grey. Only cohorts that satisfy N>75 and mean interval > 0.5 years are shown. The estimated trajectories of the volumes themselves are displayed in the bottom row, for all subjects (solid line) and for subjects not part of diagnostic groups (dashed line).
Figure 3:
Figure 3:
Genetic effects on rates of brain changes throughout the lifespan. Genome-wide significant SNPs and genes with effects on brain changes at their respective loci across the human genome, from phase 2 (total N=15,100). This plot was created using PhenoGram (http://visualization.ritchielab.org).
Figure 4:
Figure 4:
Summary of findings for two top-SNPs. Shown here is a summary of findings for a top-SNP of an age independent effect (rs72772746; intron to GPR139; associated with rate of change of lateral ventricle volume; left column) and a top-SNP of an age dependent effect (13:72353395; intron to DACH1; associated with rate of change in cerebral white matter volume; right column). Displayed are the locus plots (a) and (d), forest plot (b; total N = 14593, means and 95% confidence intervals are displayed for each cohort; confidence intervals that are outside the axis of the plot are marked with an arrow) and plot of meta-regression (e; total N = 13864, center of the circles represent the effect size of the tested allele for each cohort, radius of the circles are proportional to sample size) and inferred lifespan trajectories for carriers (in red) and non-carriers of the effect allele (in black) (c) and (f). Note that 13:72353395 was not in the reference dataset containing LD structure; the displayed LD structure is based on 13:7234009, R2 = 0.87 with the top-SNP.
Figure 5:
Figure 5:
Genetic overlap with other phenotypes. P-values for pleiotropy between change rates of structural brain measures (rows, indicated by Δ for change rate) and neuropsychiatric, disease-related and psychological traits (columns on the left). P-values for pleiotropy between change rates of structural brain measures and head size (intracranial volume) and the cross-sectional brain measure are displayed on the right. The colour legend is displayed on the right, indicating the -log10 p-value. Significant overlap (p < 1.6e-04; obtained through permutation testing, two-sided, Bonferroni corrected) is marked with *. P-values underlying this figure can be found in Supplemental Table 16.

References

    1. Hedman AM, van Haren NE, Schnack HG, Kahn RS & Hulshoff Pol HE Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 33, 1987–2002 (2012).
    1. Giedd JN et al. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2, 861–863 (1999).
    1. Raz N. et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15, 1676–1689 (2005).
    1. Ramsden S. et al. Verbal and non-verbal intelligence changes in the teenage brain. Nature 0, 6–10 (2011).
    1. Schnack HG et al. Changes in thickness and surface area of the human cortex and their relationship with intelligence. Cereb Cortex 25, 1608–1617 (2015).
    1. Shaw P. et al. Development of Cortical Asymmetry in Typically Developing Children and its Disruptionin Attention-Deficit/Hyperactivity Disorder. Arch Gen Psychiatry 66, 888–896 (2009).
    1. DeLisi LE, Sakuma M, Maurizio AM, Relja M. & Hoff AL Cerebral ventricular change over the first 10 years after the onset of schizophrenia. Psychiatry Res. - Neuroimaging (2004) doi:10.1016/j.pscychresns.2003.08.004.
    1. Reiter K. et al. Five-Year Longitudinal Brain Volume Change in Healthy Elders at Genetic Risk for Alzheimer’s Disease. J. Alzheimers Dis 55, 1363–1377 (2017).
    1. Eshaghi A. et al. Deep gray matter volume loss drives disability worsening in multiple sclerosis. Ann Neurol 83, 210–222 (2018).
    1. Brouwer RM et al. Heritability of brain volume change and its relation to intelligence. Neuroimage 100, 676–683 (2014).
    1. Brans RGH et al. Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia. Arch. Gen. Psychiatry 65, 1259–1268 (2008).
    1. Kaufmann T. et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat. Neurosci (2019) doi:10.1038/s41593-019-0471-7.
    1. Thompson PM et al. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiatry 10, 1–28 (2020).
    1. Brouwer RM et al. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group. Hum Brain Mapp 38, 4444–4458 (2017).
    1. Szekely E. et al. Genetic associations with childhood brain growth, defined in two longitudinal cohorts. Genet Epidemiol 42, 405–414 (2018).
    1. Kang H. et al. Spatio-temporal transcriptome of the human brain. Nature 478 (7370), 483–9 (2011).
    1. Fletcher SC How (not) to measure replication. Eur. J. Philos. Sci 11, 57 (2021).
    1. Nøhr AC et al. Identification of a novel scaffold for a small molecule GPR139 receptor agonist. Sci. Rep 9, 1–9 (2019).
    1. Süsens U, Hermans-Borgmeyer I, Urny J. & Schaller HC Characterisation and differential expression of two very closely related G-protein-coupled receptors, GPR139 and GPR142, in mouse tissue and during mouse development. Neuropharmacology (2006) doi:10.1016/j.neuropharm.2005.11.003.
    1. Dao M, Stoveken HM, Cao Y. & Martemyanov KA The role of orphan receptor GPR139 in neuropsychiatric behavior. Neuropsychopharmacology (2021) doi:10.1038/s41386-021-00962-2.
    1. Pagnamenta AT et al. Rare familial 16q21 microdeletions under a linkage peak implicate cadherin 8 (CDH8) in susceptibility to autism and learning disability. J Med Genet 7.
    1. Castiglioni V. et al. Dynamic and Cell-Speci fi c DACH1 Expression in Human Neocortical and Striatal Development. 2115–2124 (2019) doi:10.1093/cercor/bhy092.
    1. Wolfe CM, Fitz NF, Nam KN, Lefterov I. & Koldamova R. The role of APOE and TREM2 in Alzheimer ′ s disease—Current understanding and perspectives. Int. J. Mol. Sci 20, 65–70 (2019).
    1. Hauser PS, Narayanaswami V. & Ryan RO Apolipoprotein E: From lipid transport to neurobiology. Prog. Lipid Res 50, 62–74 (2011).
    1. Steinberg SF Structural Basis of Protein Kinase C Isoform Function. Physiol. Rev 88, 1341–1378 (2008).
    1. Hibar DP et al. Novel genetic loci associated with hippocampal volume. Nat Commun 8, 13624 (2017).
    1. Howard DM et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci 22, 343–352 (2019).
    1. Psychiatric Genomics Consortium. Biological Insights From 108 Schizophrenia-Associated Genetic Loci. Nature 511, 421–427 (2014).
    1. Savage JE et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet 50, 912–919 (2018).
    1. Yengo L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ~700 000 individuals of European ancestry. Hum. Mol. Genet 27, 3641–3649 (2018).
    1. Jansen PR et al. Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat. Genet 51, 394–403 (2019).
    1. Watanabe K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet 51, (2019).
    1. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science 348, 648–660 (2015).
    1. Miller JA et al. Transcriptional landscape of the prenatal human brain. Nature 508, 199–206 (2014).
    1. Callender JA & Newton AC Conventional protein kinase C in the brain: 40 years later. Neuronal Signal. 1, NS20160005 (2017).
    1. Bobb JF, Schwartz BS, Davatzikos C. & Caffo B. Cross-sectional and longitudinal association of body mass index and brain volume. Hum. Brain Mapp 35, 75–88 (2014).
    1. Kim RE et al. Lifestyle-dependent brain change: a longitudinal cohort MRI study. Neurobiol. Aging (2018) doi:10.1016/j.neurobiolaging.2018.04.017.
    1. Hulshoff Pol HE & Kahn RS What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophr Bull 34, 354–366 (2008).
    1. Fjell AM et al. The genetic organization of longitudinal subcortical volumetric change is stable throughout the lifespan. eLife 10, e66466 (2021).
    1. Elliott LT et al. Genome-wide association studies of brain imaging phenotypes in UK Biobank. Nature 562, 210–216 (2018).
    1. Satizabal CL et al. Genetic architecture of subcortical brain structures in 38,851 individuals. Nat. Genet 51, (2019).
    1. Grasby KL et al. The genetic architecture of the human cerebral cortex. Science 367, (2020).
    1. Pfefferbaum A. & Sullivan EV Cross-sectional versus longitudinal estimates of age-related changes in the adult brain: overlaps and discrepancies. Neurobiol Aging 36, 2563–2567 (2015).
    1. Xu Z, Shen X, Pan W, & for the Alzheimer’s Disease Neuroimaging Initiative. Longitudinal Analysis Is More Powerful than Cross-Sectional Analysis in Detecting Genetic Association with Neuroimaging Phenotypes. PLoS ONE 9, e102312 (2014).
    1. Fjell AM et al. Development and aging of cortical thickness correspond to genetic organization patterns. Proc Natl Acad Sci U A (2015) doi:10.1073/pnas.1508831112.
    1. Walhovd KB et al. Neurodevelopmental origins of lifespan changes in brain and cognition. Proc. Natl. Acad. Sci. U. S. A 113, 9357–9362 (2016).
    1. Sullivan EV Differential Rates of Regional Brain Change in Callosal and Ventricular Size: a 4-Year Longitudinal MRI Study of Elderly Men. Cereb. Cortex 12, 438–445 (2002).
    1. Storsve AB et al. Differential Longitudinal Changes in Cortical Thickness, Surface Area and Volume across the Adult Life Span: Regions of Accelerating and Decelerating Change. J. Neurosci 34, 8488–8498 (2014).
Methods References
    1. Fischl B. et al. Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain. Neuron 33, 341–355 (2002).
    1. Fischl B. et al. Sequence-independent segmentation of magnetic resonance images. Neuroimage 23 Suppl 1, S69–84 (2004).
    1. Reuter M, Schmansky NJ, Rosas HD & Fischl B. Within-Subject Template Estimation for Unbiased Longitudinal Image Analysis. Neuroimage 61, 1402–1418 (2012).
    1. Iscan Z. et al. Test-retest reliability of freesurfer measurements within and between sites: Effects of visual approval process. Hum. Brain Mapp 36, 3472–3485 (2015).
    1. Wonderlick JS et al. Reliability of MRI-derived cortical and subcortical morphometric measures: Effects of pulse sequence, voxel geometry, and parallel imaging. NeuroImage (2009) doi:10.1016/j.neuroimage.2008.10.037.
    1. Liem F. et al. Reliability and statistical power analysis of cortical and subcortical FreeSurfer metrics in a large sample of healthy elderly. Neuroimage 108, 95–109 (2015).
    1. Voevodskaya O. et al. The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease. Front. Aging Neurosci 6, 1–14 (2014).
    1. Cleveland WS LOWESS : A Program for Smoothing Scatterplots by Robust Locally Weighted Regression. Am. Stat 35, 10–11 (1981).
    1. The R Core Team. R: A language and environment for statistical computing. (2018).
    1. The 1000 Genomes Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).
    1. Das S. et al. Next-generation genotype imputation service and methods. Nat Genet 48, 1284–1287 (2016).
    1. McCarthy S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet 48, 1279–1283 (2016).
    1. International HapMap Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58 (2010).
    1. Feng S, Liu D, Zhan X, Wing MK & Abecasis GR RAREMETAL: fast and powerful meta-analysis for rare variants. Bioinformatics 30, 2828–2829 (2014).
    1. Baker WL, Michael White C, Cappelleri JC, Kluger J. & Coleman CI Understanding heterogeneity in meta-analysis: The role of meta-regression. Int. J. Clin. Pract 63, 1426–1434 (2009).
    1. Willer CJ, Li Y. & Abecasis GR METAL: fast and efficient meta-analysis of genome-wide association scans. Bioinformatics 26, 2190–2191 (2010).
    1. Viechtbauer W. Journal of statistical software. J. Stat. Softw 36, 1–48 (2010).
    1. Watanabe K, Taskesen E, Van Bochoven A. & Posthuma D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun 8, 1–10 (2017).
    1. Lonsdale J. et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet 45, 580–585 (2013).
    1. Westra HJ et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet 45, 1238–1243 (2013).
    1. Zhernakova DV et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nat. Genet 49, 139–145 (2017).
    1. Ramasamy A. et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat. Neurosci 17, 1418–1428 (2014).
    1. Grundberg E. et al. Mapping cis-and trans-regulatory effects across multiple tissues in twins. Nat. Genet 44, 1084–1089 (2012).
    1. Ng B. et al. An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat. Neurosci 20, 1418–1426 (2017).
    1. Fromer M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci 19, 1442–1453 (2016).
    1. Schmitt AD et al. A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. Cell Rep. (2016) doi:10.1016/j.celrep.2016.10.061.
    1. de Leeuw CA, Mooij JM, Heskes T. & Posthuma D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. PLoS Comput. Biol 11, 1–19 (2015).
    1. The Gene Ontology Consortium. Gene Ontology Consortium : going forward. Nucleic Acids Res. 43, 1049–1056 (2015).
    1. Subramanian A. et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A 102, 15545–15550 (2005).
    1. Nyholt DR A Simple Correction for Multiple Testing for Single-Nucleotide Polymorphisms in Linkage Disequilibrium with Each Other. Am J Hum Genet 74, 765–769 (2004).
    1. Bulik-Sullivan BK et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47, 291–295 (2015).
    1. Benjamini Y. & Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc 57, 289–300 (1995).
    1. Nyholt DR SECA: SNP effect concordance analysis using genome-wide association summary results. Bioinformatics 30, 2086–2088 (2014).
    1. Pappa I. et al. A genome-wide approach to children’s aggressive behavior: The EAGLE consortium. Am. J. Med. Genet. B Neuropsychiatr. Genet 171, 562–572 (2016).
    1. Walters RK et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat. Neurosci 21, 1656–1669 (2018).
    1. Lambert JC et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet 45, 1452–1458 (2013).
    1. Demontis D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet 51, 63–75 (2019).
    1. Psychiatric Genomics Consortium. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol. Autism 8, 21 (2017).
    1. Stahl E. & Bipolar Working Group of the Psychiatric Genomics Consortium. Genome-Wide Association Study Identifies Twenty New Loci Associated With Bipolar Disorder. Eur. Neuropsychopharmacol 29, S816 (2019).
    1. Scott RA et al. An Expanded Genome-Wide Association Study of Type 2 Diabetes in Europeans. Diabetes 66, 2888–2902 (2017).
    1. The International League Against Epilepsy Consortium on Complex Epilepsies. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat. Commun 9, 5269 (2018).
    1. Liu JZ et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet 47, 979–986 (2015).
    1. Sawcer S. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).
    1. Nalls MA et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet 46, 989–993 (2014).
    1. Okada Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).
    1. Adams HH et al. Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nat Neurosci 19, 1569–1582 (2016).

Source: PubMed

3
Suscribir