Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase

M Aviram, M Rosenblat, C L Bisgaier, R S Newton, S L Primo-Parmo, B N La Du, M Aviram, M Rosenblat, C L Bisgaier, R S Newton, S L Primo-Parmo, B N La Du

Abstract

HDL levels are inversely related to the risk of developing atherosclerosis. In serum, paraoxonase (PON) is associated with HDL, and was shown to inhibit LDL oxidation. Whether PON also protects HDL from oxidation is unknown, and was determined in the present study. In humans, we found serum HDL PON activity and HDL susceptibility to oxidation to be inversely correlated (r2 = 0.77, n = 15). Supplementing human HDL with purified PON inhibited copper-induced HDL oxidation in a concentration-dependent manner. Adding PON to HDL prolonged the oxidation lag phase and reduced HDL peroxide and aldehyde formation by up to 95%. This inhibitory effect was most pronounced when PON was added before oxidation initiation. When purified PON was added to whole serum, essentially all of it became HDL-associated. The PON-enriched HDL was more resistant to copper ion-induced oxidation than was control HDL. Compared with control HDL, HDL from PON-treated serum showed a 66% prolongation in the lag phase of its oxidation, and up to a 40% reduction in peroxide and aldehyde content. In contrast, in the presence of various PON inhibitors, HDL oxidation induced by either copper ions or by a free radical generating system was markedly enhanced. As PON inhibited HDL oxidation, two major functions of HDL were assessed: macrophage cholesterol efflux, and LDL protection from oxidation. Compared with oxidized untreated HDL, oxidized PON-treated HDL caused a 45% increase in cellular cholesterol efflux from J-774 A.1 macrophages. Both HDL-associated PON and purified PON were potent inhibitors of LDL oxidation. Searching for a possible mechanism for PON-induced inhibition of HDL oxidation revealed PON (2 paraoxonase U/ml)-mediated hydrolysis of lipid peroxides (by 19%) and of cholesteryl linoleate hydroperoxides (by 90%) in oxidized HDL. HDL-associated PON, as well as purified PON, were also able to substantially hydrolyze (up to 25%) hydrogen peroxide (H2O2), a major reactive oxygen species produced under oxidative stress during atherogenesis. Finally, we analyzed serum PON activity in the atherosclerotic apolipoprotein E-deficient mice during aging and development of atherosclerotic lesions. With age, serum lipid peroxidation and lesion size increased, whereas serum PON activity decreased. We thus conclude that HDL-associated PON possesses peroxidase-like activity that can contribute to the protective effect of PON against lipoprotein oxidation. The presence of PON in HDL may thus be a major contributor to the antiatherogenicity of this lipoprotein.

References

    1. J Lipid Res. 1993 Oct;34(10):1745-53
    1. Biochem J. 1973 Sep;135(1):93-9
    1. Methods Enzymol. 1978;52:302-10
    1. J Lipid Res. 1982 Jul;23(5):680-91
    1. Am J Hum Genet. 1983 Mar;35(2):214-27
    1. Biochem Med. 1983 Aug;30(1):111-8
    1. J Clin Invest. 1986 Feb;77(2):641-4
    1. Clin Chem. 1986 Apr;32(4):671-3
    1. Circulation. 1986 Dec;74(6):1217-25
    1. Am Heart J. 1987 Feb;113(2 Pt 2):589-97
    1. J Lipid Res. 1989 Jan;30(1):65-76
    1. N Engl J Med. 1989 Apr 6;320(14):915-24
    1. Free Radic Res Commun. 1989;6(1):67-75
    1. J Lipid Res. 1989 Apr;30(4):627-30
    1. Arteriosclerosis. 1989 Nov-Dec;9(6):785-97
    1. Biochem Pharmacol. 1990 Jun 1;39(11):1743-50
    1. Eur Heart J. 1990 Aug;11 Suppl E:116-21
    1. Drug Metab Dispos. 1991 Jan-Feb;19(1):100-6
    1. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6457-61
    1. FEBS Lett. 1991 Jul 29;286(1-2):152-4
    1. Atherosclerosis. 1991 Feb;86(2-3):193-9
    1. J Lipid Res. 1992 Jun;33(6):899-906
    1. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10316-20
    1. Atherosclerosis. 1993 Jan 4;98(1):1-9
    1. Chem Biol Interact. 1993 Jun;87(1-3):25-34
    1. Arterioscler Thromb. 1994 Jan;14(1):141-7
    1. Atherosclerosis. 1993 Dec;104(1-2):129-35
    1. Arterioscler Thromb. 1994 Apr;14(4):605-16
    1. Biochem Biophys Res Commun. 1994 Apr 15;200(1):408-16
    1. Biochem Biophys Res Commun. 1994 Jun 30;201(3):1567-74
    1. J Clin Invest. 1994 Sep;94(3):937-45
    1. Biochem Mol Biol Int. 1994 Jul;33(4):699-704
    1. Biochim Biophys Acta. 1994 Dec 8;1215(3):250-8
    1. J Clin Invest. 1995 Feb;95(2):774-82
    1. Am J Clin Nutr. 1995 Mar;61(3):549-54
    1. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7187-91
    1. Atherosclerosis. 1995 Jun;115(2):243-53
    1. Biochem Biophys Res Commun. 1995 Nov 13;216(2):501-13
    1. Arterioscler Thromb Vasc Biol. 1995 Nov;15(11):1812-8
    1. Drug Metab Dispos. 1995 Sep;23(9):935-44
    1. J Lipid Res. 1995 Sep;36(9):2017-26
    1. J Clin Invest. 1996 Apr 1;97(7):1630-9
    1. Eur J Clin Chem Clin Biochem. 1995 Oct;33(10):721-5
    1. Arterioscler Thromb Vasc Biol. 1996 Jul;16(7):831-42
    1. Isr J Med Sci. 1996 Jun;32(6):473-8
    1. J Clin Invest. 1995 Dec;96(6):2882-91
    1. J Clin Invest. 1996 Aug 1;98(3):800-14
    1. Curr Opin Lipidol. 1996 Apr;7(2):69-76
    1. J Biol Chem. 1996 Sep 20;271(38):23080-8
    1. Curr Opin Lipidol. 1996 Jun;7(3):139-42
    1. Arterioscler Thromb Vasc Biol. 1996 Oct;16(10):1243-9
    1. Eur J Clin Chem Clin Biochem. 1996 Aug;34(8):599-608
    1. Nat Med. 1996 Nov;2(11):1186-7
    1. J Clin Invest. 1997 Jan 1;99(1):62-6
    1. J Lipid Res. 1996 Dec;37(12):2473-91
    1. Lancet. 1997 Mar 22;349(9055):851-2
    1. J Clin Invest. 1997 Apr 15;99(8):2005-19
    1. Free Radic Biol Med. 1997;23(2):302-13
    1. Am J Clin Nutr. 1997 Aug;66(2):267-75
    1. Arterioscler Thromb Vasc Biol. 1997 Nov;17(11):2744-52
    1. Biochem J. 1993 Sep 15;294 ( Pt 3):829-34

Source: PubMed

3
Iratkozz fel