Inhibition of the mammalian target of rapamycin (mTOR) in advanced pancreatic cancer: results of two phase II studies

Milind M Javle, Rachna T Shroff, Henry Xiong, Gauri A Varadhachary, David Fogelman, Shrikanth A Reddy, Darren Davis, Yujian Zhang, Robert A Wolff, James L Abbruzzese, Milind M Javle, Rachna T Shroff, Henry Xiong, Gauri A Varadhachary, David Fogelman, Shrikanth A Reddy, Darren Davis, Yujian Zhang, Robert A Wolff, James L Abbruzzese

Abstract

Background: The phosphoinositide 3-kinase (PI3K)/Akt pathway is constitutively activated in pancreatic cancer and the mammalian target of rapamycin (mTOR) kinase is an important mediator for its signaling. Our recent in vitro studies suggest that prolonged exposure of pancreatic cancer cells to mTOR inhibitors can promote insulin receptor substrate-PI3K interactions and paradoxically increase Akt phosphorylation and cyclin D1 expression in pancreatic cancer cells (negative feedback loop). The addition of erlotinib to rapamycin can down-regulate rapamycin-stimulated Akt and results in synergistic antitumor activity with erlotinib in preclinical tumor models.

Methods: Two studies prospectively enrolled adult patients with advanced pancreatic cancer, Eastern Cooperative Oncology Group performance status 0-1, adequate hematologic, hepatic and renal parameters and measurable disease. In Study A, temsirolimus was administered intravenously at 25 mg weekly. In Study B, everolimus was administered orally at 30 mg weekly and erlotinib was administered at 150 mg daily. The primary endpoint in both studies was overall survival at 6 months. Secondary endpoints included time to progression, progression-free survival, overall survival, response rate, safety and toxicity. Pretreatment tumor biopsies were analyzed by immunofluorescence and laser scanning cytometry for the expression of pmTOR/mTOR, pAkt/Akt, pErk/Erk, pS6, p4EBP-1 and PTEN.

Results: Five patients enrolled in Study A; Two patients died within a month (rapid disease progression and hemorrhagic stroke, respectively). One patient developed dehydration and another developed asthenia. Sixteen patients enrolled in Study B.: 12 males, all ECOG PS = 1. Median cycles = 1 (range 1-2). Grade 4 toxicity: hyponatremia (n = 1), Grade 3: diarrhea (n = 1), cholangitis (n = 3), hyperglycemia (n = 1), fatigue (n = 1). Grade 2: pneumonia (n = 2), dehydration (n = 2), nausea (n = 2), neutropenia (n = 1), mucositis (n = 2) & rash (n = 2). Four patients were hospitalized. Progressive disease occurred in 15 and 1 was non-evaluable. Pretreatment biopsies revealed a higher pAkt/Akt ratio in tumor specimens that in nonmalignant pancreatic tissue. No such trends were noted for the other biomarkers.

Conclusions: Neither study with mTOR inhibitors demonstrated objective responses or disease stability. The negative feedback loop resulting from mTOR inhibition may account for the disease progression and toxicity noted in these studies. Future strategies should aim for a broader targeting of the PI3K pathway in pancreatic cancer.

Study a: NCT 0075647.

Study b: NCT00640978.

Figures

Figure 1
Figure 1
Protein Expression by Immunofluorescence. Pretreatment biopsies revealed increased pAkt/Akt ratio in tumor specimens as compared with non malignant pancreatic tissue. No such trends were noted for pErk/Erk or pmTOR/mTOR. Immunofluorescence results depicted above.
Figure 2
Figure 2
Mean fluorescence intensity (MFI) of the biomarkers by laser scanning cytometry (LSC). For each biomarker, the box represents the middle half of the distribution of the data points stretching from the 25th to the 75th percentile. The line across the box represents the median. The lengths of the lines above and below the box are defined by the maximum and minimum data point values, respectively.
Figure 3
Figure 3
Ratio of phosphorylated/total Akt and phosphorylated/total mTOR. For each set of values, the box represents the middle half of the distribution of the data points stretching from the 25th to the 75th percentile. The line across the box represents the median. The lengths of the lines above and below the box are defined by the maximum and minimum data point values, respectively.

References

    1. Burris HA III, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–2413.
    1. Xiong HQ, Varadhachary GR, Blais JC, Hess KR, Abbruzzese JL, Wolff RA. Phase 2 trial of oxaliplatin plus capecitabine (XELOX) as second-line therapy for patients with advanced pancreatic cancer. Cancer. 2008;113:2046–2052. doi: 10.1002/cncr.23810.
    1. Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA. The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene. 2004;23:8571–8580. doi: 10.1038/sj.onc.1207902.
    1. Rowinsky EK. Targeting the molecular target of rapamycin (mTOR) Curr Opin Oncol. 2004;16:564–575. doi: 10.1097/01.cco.0000143964.74936.d1.
    1. Cohen Y, Merhavi-Shoham E, Avraham-Lubin BC, Savetsky M, Frenkel S, Pe'er J, Goldenberg-Cohen N. PI3K/Akt pathway mutations in Retinoblastoma. Invest Ophthalmol Vis Sci. 2009;50:5054–6. doi: 10.1167/iovs.09-3617.
    1. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, Campos D, Lim R, Ding K, Clark G, Voskoglou-Nomikos T, Ptasynski M, Parulekar W. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25:1960–1966. doi: 10.1200/JCO.2006.07.9525.
    1. Buck E, Eyzaguirre A, Brown E, Petti F, McCormack S, Haley JD, Iwata KK, Gibson NW, Griffin G. Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther. 2006;5:2676–2684. doi: 10.1158/1535-7163.MCT-06-0166.
    1. Papadimitrakopoulou V, Blumenschein GR Jr, Leighl NB, Bennouna J, Soria JC, Burris HA III, Dimitrijevic S, Kunz T, Di Scala L, Johnson BE. A phase 1/2 study investigating the combination of RAD001 (R) (everolimus) and erlotinib (E) as 2nd and 3rd line therapy in patients (pts) with advanced non-small cell lung cancer (NSCLC) previously treated with chemotherapy (C): Phase 1 results. ASCO Meeting Abstracts. 2008;26:8051.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, Rubinstein L, Shankar L, Dodd L, Kaplan R, Lacombe D, Verweij J. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45:228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Davis DW, Takamori R, Raut CP, Xiong HQ, Herbst RS, Stadler WM, Heymach JV, Demetri GD, Rashid A, Shen Y, Wen S, Abbruzzese JL, McConkey DJ. Pharmacodynamic analysis of target inhibition and endothelial cell death in tumors treated with the vascular endothelial growth factor receptor antagonists SU5416 or SU6668. Clin Cancer Res. 2005;11:678–689. doi: 10.1158/1078-0432.CCR-04-1655.
    1. Davis DW, Shen Y, Mullani NA, Wen S, Herbst RS, O'Reilly M, Abbruzzese JL, McConkey DJ. Quantitative analysis of biomarkers defines an optimal biological dose for recombinant human endostatin in primary human tumors. Clin Cancer Res. 2004;10:33–42. doi: 10.1158/1078-0432.CCR-0736-3.
    1. Thall PF, Simon R. A Bayesian approach to establishing sample size and monitoring criteria for phase II clinical trials. Control Clin Trials. 1994;15:463–481. doi: 10.1016/0197-2456(94)90004-3.
    1. Rothenberg ML, Benedetti JK, Macdonald JS, Seay TE, Neubauer MA, George CS, Tanaka MS Jr, Giguere JK, Pruitt BT, Abbruzzese JL. Phase II trial of 5-fluorouracil plus eniluracil in patients with advanced pancreatic cancer: a Southwest Oncology Group study. Ann Oncol. 2002;13:1576–1582. doi: 10.1093/annonc/mdf274.
    1. Tabernero J, Rojo F, Calvo E, Burris H, Judson I, Hazell K, Martinelli E, Cajal S, Jones S, Vidal L, Shand N, Macarulla T, Ramos FJ, Dimitrijevic S, Zoellner U, Tang P, Stumm M, Lane HA, Lebwohl D, Baselga J. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol. 2008;26:1603–1610. doi: 10.1200/JCO.2007.14.5482.
    1. Wolpin BM, Hezel AF, Abrams T, Blaszkowsky LS, Meyerhardt JA, Chan JA, Enzinger PC, Allen B, Clark JW, Ryan DP, Fuchs CS. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol. 2009;27:193–198. doi: 10.1200/JCO.2008.18.9514.
    1. Asano T, Yao Y, Zhu J, Li D, Abbruzzese JL, Reddy SA. The rapamycin analog CCI-779 is a potent inhibitor of pancreatic cancer cell proliferation. Biochem Biophys Res Commun. 2005;331:295–302. doi: 10.1016/j.bbrc.2005.03.166.
    1. Wan X, Harkavy B, Shen N, Grohar P, Helman LJ. Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism. Oncogene. 2007;26:1932–1940. doi: 10.1038/sj.onc.1209990.
    1. Li J, DeFea K, Roth RA. Modulation of insulin receptor substrate-1 tyrosine phosphorylation by an Akt/phosphatidylinositol 3-kinase pathway. J Biol Chem. 1999;274:9351–9356. doi: 10.1074/jbc.274.14.9351.
    1. Buck E, Eyzaguirre A, Rosenfeld-Franklin M, Thomson S, Mulvihill M, Barr S, Brown E, O'Connor M, Yao Y, Pachter J, Miglarese M, Epstein D, Iwata KK, Haley JD, Gibson NW, Ji QS. Feedback mechanisms promote cooperativity for small molecule inhibitors of epidermal and insulin-like growth factor receptors. Cancer Res. 2008;68:8322–8332. doi: 10.1158/0008-5472.CAN-07-6720.

Source: PubMed

3
Iratkozz fel