Identification of serum microRNA signatures for diagnosis of mild traumatic brain injury in a closed head injury model

Anuj Sharma, Raghavendar Chandran, Erin S Barry, Manish Bhomia, Mary Anne Hutchison, Nagaraja S Balakathiresan, Neil E Grunberg, Radha K Maheshwari, Anuj Sharma, Raghavendar Chandran, Erin S Barry, Manish Bhomia, Mary Anne Hutchison, Nagaraja S Balakathiresan, Neil E Grunberg, Radha K Maheshwari

Abstract

Wars in Iraq and Afghanistan have highlighted the problems of diagnosis and treatment of mild traumatic brain injury (mTBI). MTBI is a heterogeneous injury that may lead to the development of neurological and behavioral disorders. In the absence of specific diagnostic markers, mTBI is often unnoticed or misdiagnosed. In this study, mice were induced with increasing levels of mTBI and microRNA (miRNA) changes in the serum were determined. MTBI was induced by varying weight and fall height of the impactor rod resulting in four different severity grades of the mTBI. Injuries were characterized as mild by assessing with the neurobehavioral severity scale-revised (NSS-R) at day 1 post injury. Open field locomotion and acoustic startle response showed behavioral and sensory motor deficits in 3 of the 4 injury groups at day 1 post injury. All of the animals recovered after day 1 with no significant neurobehavioral alteration by day 30 post injury. Serum microRNA (miRNA) profiles clearly differentiated injured from uninjured animals. Overall, the number of miRNAs that were significantly modulated in injured animals over the sham controls increased with the severity of the injury. Thirteen miRNAs were found to identify mTBI regardless of its severity within the mild spectrum of injury. Bioinformatics analyses revealed that the more severe brain injuries were associated with a greater number of miRNAs involved in brain related functions. The evaluation of serum miRNA may help to identify the severity of brain injury and the risk of developing adverse effects after TBI.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. H&E stained sections of the…
Figure 1. H&E stained sections of the brain.
Histological evaluation of the brain tissue at the site of injury (arrow) was done to check for the lesion in the brain tissue following mTBI. No significant difference was observed in brain tissue sections between the sham (A), IS1 (B), IS2 (C), IS3 (D) and IS4 (E). Scale is 1 mm.
Figure 2. NSS-R for animals at day…
Figure 2. NSS-R for animals at day 1 post injury.
Change scores between day 1 post injury and baseline were calculated. A gradual, but significant increase in the NSS-R scores were observed day 1 post injury with the increased severity of the injury within the mild spectrum. As expected, naïve and sham groups did not show any increase in their NSS-R scores. No change was observed in the IS1 group. NSS-R score of IS2, IS3, and IS4 groups increased and was the highest among the IS4 group. * P value <0.05.
Figure 3. Neurobehavioral Activity.
Figure 3. Neurobehavioral Activity.
OFL test was conducted to evaluate animals' various activities in an open field as a measurement of behavioral deficits. Overall, day 1 showed significant reductions in the activities of injured animals as compared to the naïve and sham controls except for the IS1 group, which was not significantly different from that of naïve and sham groups. (A) Horizontal activity was evaluated as an indicator of the overall health. Activity was significantly reduced in the IS3 and IS4 groups. Activity in the IS2 group was significantly reduced as compared to the activity of IS1. Activity of IS1 and IS2 groups were not significantly different from the sham group. (B) Time spent in the center of the open field was evaluated as an indicator of anxiety-like behavior. Center time of the animals in IS3 and IS4 groups was reduced as compared to the 246 g injury groups (i.e., IS1 and IS2), sham and naïve animals. The reduction in activity reached significance in the IS3. (C) Vertical activity was measured as an indicator of depression-related behavior. Vertical activity of the injured animals was significantly less than that of the sham and naïve animals except the IS1 group. * P value <0.05. (D) Startle response was measured as an indicator of emotional distress and potential sensory gating impairments. Startle responses of all injured groups, except the IS1 group, were reduced when compared to naïve and sham groups at day 1 post injury. There were no differences between groups at days 14 and 30 post injury, except in the IS4 group where the startle response was significantly higher than all other groups at day 14 post injury. Values are expressed as Mean ± SEM. * P value <0.05.
Figure 4. MiRNA expression pattern.
Figure 4. MiRNA expression pattern.
(A) MiRNAs that show Ct<36 were considered as expressed. The number of miRNAs expressed ranged from 315.83−362.17 with a maximum and minimum numbers detected in IS4 and IS1 respectively. The SD ranged from 19.28−43.37, the maximum being in IS2 and the minimum in IS1. The values are presented as Mean ± SD of the number of miRNAs detected in each group. (B) The number of miRNAs that were significantly modulated (≥1.5 fold; P<0.05) following the injury over the time point matched sham controls increased with the height and weight of the free falling metal rod except in the IS3 group where the number of significantly modulated miRNAs was marginally greater than the IS4 group. (C) Overlapping miRNA data analysis for significantly modulated miRNAs in the injury groups was done using the online Venn diagram generation tool [Oliveros (2007). VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html].
Figure 5. Involvement of significantly modulated miRNA…
Figure 5. Involvement of significantly modulated miRNA in axon guidance pathway.
Quantitative bioinformatics analysis on the number of miRNA involved in the axon guidance pathway was done using IPA. The number of the significantly modulated miRNAs that were predicted to modulate axon guidance pathway increased with the severity of the injury.
Figure 6. IPA Analysis for effect of…
Figure 6. IPA Analysis for effect of significantly modulated miRNAs common among all four injury groups on brain functions related pathways.
MiRNAs common to all four injury groups were taken and their targets and pathway analysis in relation to brain related functions were performed. My Pathway tool of IPA software was used to build the custom pathway using miRNAs that show experimentally validated targets by overlaying with 1) depression, 2) sensorimotor function and the 3) axon guidance pathway molecules. Of the 13 common modulated miRNAs, only 6 miRNAs were found to have experimentally validated targets that are predicted to modulate axon guidance, synaptic depression and sensorimotor impairments.
Figure 7. Expression of miRNAs in individual…
Figure 7. Expression of miRNAs in individual real time PCR assay.
The fold upregulation of three miRNAs, miR-376a, miR-214 and miR-199a-3p, in the injury groups over the sham mice was validated using the individual real time PCR assays. Similar to the miRNA arrays, expression of the three miRNAs was found to be up regulated in the injured groups over the sham animals. Data presented is the fold up regulation (± SEM; *P<0.05) calculated from the mean DDCt value obtained from three biological samples for each injury group. Statistical significance was calculated using the individual Ct values obtained from the three biological replicates for each injury group.

References

    1. Risdall JE, Menon DK (2011) Traumatic brain injury. Philosophical transactions of the Royal Society of London Series B, Biological sciences 366: 241–250.
    1. Teasdale G, Jennett B (1976) Assessment and prognosis of coma after head injury. Acta neurochirurgica 34: 45–55.
    1. Fischer H (2013) U.S. Military Casualty Statistics: Operation New Dawn, Operation Iraqi Freedom, and Operation Enduring Freedom. CRS Report for Congress. Prepared for Members and Committees of Congress: Congressional Research Service. pp. 1–12.
    1. Belanger HG, Vanderploeg RD, Curtiss G, Warden DL (2007) Recent neuroimaging techniques in mild traumatic brain injury. The Journal of neuropsychiatry and clinical neurosciences 19: 5–20.
    1. Niogi SN, Mukherjee P, Ghajar J, Johnson C, Kolster RA, et al. (2008) Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR American journal of neuroradiology 29: 967–973.
    1. Yuh EL, Cooper SR, Ferguson AR, Manley GT (2012) Quantitative CT improves outcome prediction in acute traumatic brain injury. Journal of neurotrauma 29: 735–746.
    1. Vos PE, Jacobs B, Andriessen TM, Lamers KJ, Borm GF, et al. (2010) GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology 75: 1786–1793.
    1. Thelin EP, Johannesson L, Nelson D, Bellander BM (2013) S100B Is an Important Outcome Predictor in Traumatic Brain Injury. Journal of neurotrauma 30: 519–528.
    1. Papa L, Lewis LM, Falk JL, Zhang Z, Silvestri S, et al. (2012) Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Annals of emergency medicine 59: 471–483.
    1. Papa L, Lewis LM, Silvestri S, Falk JL, Giordano P, et al. (2012) Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. The journal of trauma and acute care surgery 72: 1335–1344.
    1. Papa L, Akinyi L, Liu MC, Pineda JA, Tepas JJ 3rd, et al. (2010) Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Critical care medicine 38: 138–144.
    1. Brophy GM, Mondello S, Papa L, Robicsek SA, Gabrielli A, et al. (2011) Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. Journal of neurotrauma 28: 861–870.
    1. Pogoda TK, Hendricks AM, Iverson KM, Stolzmann KL, Krengel MH, et al. (2012) Multisensory impairment reported by veterans with and without mild traumatic brain injury history. Journal of rehabilitation research and development 49: 971–984.
    1. Theeler BJ, Flynn FG, Erickson JC (2012) Chronic daily headache in U.S. soldiers after concussion. Headache 52: 732–738.
    1. Kiraly M, Kiraly SJ (2007) Traumatic brain injury and delayed sequelae: a review–traumatic brain injury and mild traumatic brain injury (concussion) are precursors to later-onset brain disorders, including early-onset dementia. TheScientificWorldJournal 7: 1768–1776.
    1. Mayr M, Zampetaki A, Willeit P, Willeit J, Kiechl S (2013) MicroRNAs within the continuum of postgenomics biomarker discovery. Arteriosclerosis, thrombosis, and vascular biology 33: 206–214.
    1. Allegra A, Alonci A, Campo S, Penna G, Petrungaro A, et al. (2012) Circulating microRNAs: new biomarkers in diagnosis, prognosis and treatment of cancer (review). International journal of oncology 41: 1897–1912.
    1. Wahid F, Shehzad A, Khan T, Kim YY (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et biophysica acta 1803: 1231–1243.
    1. Redell JB, Liu Y, Dash PK (2009) Traumatic brain injury alters expression of hippocampal microRNAs: potential regulators of multiple pathophysiological processes. Journal of neuroscience research 87: 1435–1448.
    1. Redell JB, Zhao J, Dash PK (2011) Altered expression of miRNA-21 and its targets in the hippocampus after traumatic brain injury. Journal of neuroscience research 89: 212–221.
    1. Lei P, Li Y, Chen X, Yang S, Zhang J (2009) Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain research 1284: 191–201.
    1. Balakathiresan N, Bhomia M, Chandran R, Chavko M, McCarron RM, et al. (2012) MicroRNA let-7i is a promising serum biomarker for blast-induced traumatic brain injury. Journal of neurotrauma 29: 1379–1387.
    1. Truettner JS, Alonso OF, Bramlett HM, Dietrich WD (2011) Therapeutic hypothermia alters microRNA responses to traumatic brain injury in rats. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 31: 1897–1907.
    1. Redell JB, Moore AN, Ward NH 3rd, Hergenroeder GW, Dash PK (2010) Human traumatic brain injury alters plasma microRNA levels. Journal of neurotrauma 27: 2147–2156.
    1. Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, et al. (2009) Mouse closed head injury model induced by a weight-drop device. Nature protocols 4: 1328–1337.
    1. Grunberg NE, Yarnell AM, Hamilton KR, Starosciak AK, Chwa A, et al... (2011) A revised neurological severity scale for rodents.. Annual Meeting of Society for Neuroscience. Washington, D.C.
    1. Sharma P, Su YA, Barry ES, Grunberg NE, Lei Z (2012) Mitochondrial targeted neuron focused genes in hippocampus of rats with traumatic brain injury. International journal of critical illness and injury science 2: 172–179.
    1. Shohami E, Novikov M, Bass R (1995) Long-term effect of HU-211, a novel non-competitive NMDA antagonist, on motor and memory functions after closed head injury in the rat. Brain research 674: 55–62.
    1. Hamm RJ (2001) Neurobehavioral assessment of outcome following traumatic brain injury in rats: an evaluation of selected measures. Journal of neurotrauma 18: 1207–1216.
    1. Marti M, Mela F, Fantin M, Zucchini S, Brown JM, et al. (2005) Blockade of nociceptin/orphanin FQ transmission attenuates symptoms and neurodegeneration associated with Parkinson's disease. The Journal of neuroscience: the official journal of the Society for Neuroscience 25: 9591–9601.
    1. Yarnell AM, Shaughness MC, Barry ES, Ahlers ST, McCarron RM, et al. (2013) Blast traumatic brain injury in the rat using a blast overpressure model. Current protocols in neuroscience/editorial board Jacqueline N Crawley [et al] Chapter 9 Unit 9 41.
    1. Xing G, Barry ES, Benford B, Grunberg NE, Li H, et al. (2013) Impact of repeated stress on traumatic brain injury-induced mitochondrial electron transport chain expression and behavioral responses in rats. Frontiers in neurology 4: 196.
    1. Bowen DJ, Eury SE, Grunberg NE (1986) Nicotine's effects on female rats' body weight: caloric intake and physical activity. Pharmacology, biochemistry, and behavior 25: 1131–1136.
    1. Elliott BM, Faraday MM, Phillips JM, Grunberg NE (2004) Effects of nicotine on elevated plus maze and locomotor activity in male and female adolescent and adult rats. Pharmacology, biochemistry, and behavior 77: 21–28.
    1. Faraday MM, O'Donoghue VA, Grunberg NE (2003) Effects of nicotine and stress on locomotion in Sprague-Dawley and Long-Evans male and female rats. Pharmacology, biochemistry, and behavior 74: 325–333.
    1. Grunberg NE, Bowen DJ (1985) The role of physical activity in nicotine's effects on body weight. Pharmacology, biochemistry, and behavior 23: 851–854.
    1. Morse DE, Davis HD, Popke EJ, Brown KJ, O'Donoghue VA, et al. (1997) Effects of ddC and AZT on locomotion and acoustic startle. I: Acute effects in female rats. Pharmacology, biochemistry, and behavior 56: 221–228.
    1. Hamilton KR, Starosciak AK, Chwa A, Grunberg NE (2012) Nicotine behavioral sensitization in Lewis and Fischer male rats. Experimental and clinical psychopharmacology 20: 345–351.
    1. Acri JB, Grunberg NE, Morse DE (1991) Effects of nicotine on the acoustic startle reflex amplitude in rats. Psychopharmacology 104: 244–248.
    1. Alain C, He Y, Grady C (2008) The contribution of the inferior parietal lobe to auditory spatial working memory. Journal of cognitive neuroscience 20: 285–295.
    1. Swerdlow NR, Caine SB, Braff DL, Geyer MA (1992) The neural substrates of sensorimotor gating of the startle reflex: a review of recent findings and their implications. Journal of psychopharmacology (Oxford, England) 6: 176–190.
    1. Acri JB, Morse DE, Popke EJ, Grunberg NE (1994) Nicotine increases sensory gating measured as inhibition of the acoustic startle reflex in rats. Psychopharmacology 114: 369–374.
    1. Faraday MM, Rahman MA, Scheufele PM, Grunberg NE (1998) Nicotine administration impairs sensory gating in Long-Evans rats. Pharmacology, biochemistry, and behavior 61: 281–289.
    1. Allison PD (1990) Change Scores as Dependent Variables in Regression Analysis. Sociological Methodology 20: 93–114.
    1. D'Haene B, Mestdagh P, Hellemans J, Vandesompele J (2012) miRNA expression profiling: from reference genes to global mean normalization. Methods in molecular biology (Clifton, NJ) 822: 261–272.
    1. Deo A, Carlsson J, Lindlof A (2011) How to choose a normalization strategy for miRNA quantitative real-time (qPCR) arrays. Journal of bioinformatics and computational biology 9: 795–812.
    1. Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, et al. (1994) A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. Journal of neurosurgery 80: 291–300.
    1. Foda MA, Marmarou A (1994) A new model of diffuse brain injury in rats. Part II: Morphological characterization. Journal of neurosurgery 80: 301–313.
    1. Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, et al. (2012) DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic acids research 40: W498–504.
    1. Song J, Bai Z, Han W, Zhang J, Meng H, et al. (2012) Identification of suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients. Digestive diseases and sciences 57: 897–904.
    1. Rapp PE, Curley KC (2012) Is a diagnosis of “mild traumatic brain injury” a category mistake? The journal of trauma and acute care surgery 73: S13–23.
    1. Bryan CJ, Clemans TA, Hernandez AM, Rudd MD (2013) Loss of consciousness, depression, posttraumatic stress disorder, and suicide risk among deployed military personnel with mild traumatic brain injury. The Journal of head trauma rehabilitation 28: 13–20.
    1. Katz RJ, Roth KA, Carroll BJ (1981) Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neuroscience and biobehavioral reviews 5: 247–251.
    1. Seligman ME, Maier SF (1967) Failure to escape traumatic shock. Journal of experimental psychology 74: 1–9.
    1. Overmier JB, Seligman ME (1967) Effects of inescapable shock upon subsequent escape and avoidance responding. Journal of comparative and physiological psychology 63: 28–33.
    1. Kumar S, Rao SL, Nair RG, Pillai S, Chandramouli BA, et al. (2005) Sensory gating impairment in development of post-concussive symptoms in mild head injury. Psychiatry and clinical neurosciences 59: 466–472.
    1. Lee Y, Lopez DE, Meloni EG, Davis M (1996) A primary acoustic startle pathway: obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. The Journal of neuroscience: the official journal of the Society for Neuroscience 16: 3775–3789.
    1. Koch M, Schnitzler HU (1997) The acoustic startle response in rats–circuits mediating evocation, inhibition and potentiation. Behavioural brain research 89: 35–49.
    1. Freund HJ (2003) Somatosensory and motor disturbances in patients with parietal lobe lesions. Advances in neurology 93: 179–193.
    1. Leung AW, Alain C (2011) Working memory load modulates the auditory “What” and “Where” neural networks. NeuroImage 55: 1260–1269.
    1. Liu L, Sun T, Liu Z, Chen X, Zhao L, et al. (2014) Traumatic Brain Injury Dysregulates MicroRNAs to Modulate Cell Signaling in Rat Hippocampus. PloS one 9: e103948.
    1. Sabirzhanov B, Zhao Z, Stoica BA, Loane DJ, Wu J, et al. (2014) Downregulation of miR-23a and miR-27a following Experimental Traumatic Brain Injury Induces Neuronal Cell Death through Activation of Proapoptotic Bcl-2 Proteins. The Journal of neuroscience: the official journal of the Society for Neuroscience 34: 10055–10071.
    1. Bao TH, Miao W, Han JH, Yin M, Yan Y, et al... (2014) Spontaneous Running Wheel Improves Cognitive Functions of Mouse Associated with miRNA Expressional Alteration in Hippocampus Following Traumatic Brain Injury. Journal of molecular neuroscience: MN.
    1. Moon C, Ahn M, Kim S, Jin JK, Sim KB, et al. (2004) Temporal patterns of the embryonic intermediate filaments nestin and vimentin expression in the cerebral cortex of adult rats after cryoinjury. Brain research 1028: 238–242.
    1. Hausmann R, Betz P (2001) Course of glial immunoreactivity for vimentin, tenascin and alpha1-antichymotrypsin after traumatic injury to human brain. International journal of legal medicine 114: 338–342.
    1. Wang G, Jiang X, Pu H, Zhang W, An C, et al. (2013) Scriptaid, a novel histone deacetylase inhibitor, protects against traumatic brain injury via modulation of PTEN and AKT pathway: scriptaid protects against TBI via AKT. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics 10: 124–142.
    1. Goh CP, Putz U, Howitt J, Low LH, Gunnersen J, et al. (2014) Nuclear trafficking of Pten after brain injury leads to neuron survival not death. Experimental neurology 252: 37–46.
    1. Yang K, Perez-Polo JR, Mu XS, Yan HQ, Xue JJ, et al. (1996) Increased expression of brain-derived neurotrophic factor but not neurotrophin-3 mRNA in rat brain after cortical impact injury. Journal of neuroscience research 44: 157–164.
    1. Van Den Heuvel C, Lewis S, Wong M, Manavis J, Finnie J, et al... (1998) Diffuse neuronal perikaryon amyloid precursor protein immunoreactivity in a focal head impact model. Acta neurochirurgica Supplement 71: 209–211.
    1. Griesbach GS, Hovda DA, Molteni R, Gomez-Pinilla F (2002) Alterations in BDNF and synapsin I within the occipital cortex and hippocampus after mild traumatic brain injury in the developing rat: reflections of injury-induced neuroplasticity. Journal of neurotrauma 19: 803–814.
    1. Itoh T, Satou T, Nishida S, Tsubaki M, Hashimoto S, et al. (2009) Improvement of cerebral function by anti-amyloid precursor protein antibody infusion after traumatic brain injury in rats. Molecular and cellular biochemistry 324: 191–199.
    1. Murakami N, Yamaki T, Iwamoto Y, Sakakibara T, Kobori N, et al. (1998) Experimental brain injury induces expression of amyloid precursor protein, which may be related to neuronal loss in the hippocampus. Journal of neurotrauma 15: 993–1003.
    1. Corrigan F, Thornton E, Roisman LC, Leonard AV, Vink R, et al. (2014) The neuroprotective activity of the amyloid precursor protein against traumatic brain injury is mediated via the heparin binding site in residues 96-110. Journal of neurochemistry 128: 196–204.
    1. Corrigan F, Vink R, Blumbergs PC, Masters CL, Cappai R, et al. (2012) Characterisation of the effect of knockout of the amyloid precursor protein on outcome following mild traumatic brain injury. Brain research 1451: 87–99.
    1. Hanell A, Clausen F, Djupsjo A, Vallstedt A, Patra K, et al. (2012) Functional and histological outcome after focal traumatic brain injury is not improved in conditional EphA4 knockout mice. Journal of neurotrauma 29: 2660–2671.
    1. Takeuchi S, Nawashiro H, Sato S, Kawauchi S, Nagatani K, et al. (2013) A better mild traumatic brain injury model in the rat. Acta neurochirurgica Supplement 11899–101.
    1. Selwyn R, Hockenbury N, Jaiswal S, Mathur S, Armstrong RC, et al. (2013) Mild traumatic brain injury results in depressed cerebral glucose uptake: An (18)FDG PET study. Journal of neurotrauma 30: 1943–1953.
    1. Johnson VE, Stewart W, Smith DH (2013) Axonal pathology in traumatic brain injury. Experimental neurology 246: 35–43.
    1. Schirmer L, Merkler D, Konig FB, Bruck W, Stadelmann C (2013) Neuroaxonal regeneration is more pronounced in early multiple sclerosis than in traumatic brain injury lesions. Brain pathology (Zurich, Switzerland) 23: 2–12.
    1. Urrea C, Castellanos DA, Sagen J, Tsoulfas P, Bramlett HM, et al. (2007) Widespread cellular proliferation and focal neurogenesis after traumatic brain injury in the rat. Restorative neurology and neuroscience 25: 65–76.
    1. Frugier T, Conquest A, McLean C, Currie P, Moses D, et al. (2012) Expression and activation of EphA4 in the human brain after traumatic injury. Journal of neuropathology and experimental neurology 71: 242–250.
    1. Rostami E, Davidsson J, Ng KC, Lu J, Gyorgy A, et al. (2012) A Model for Mild Traumatic Brain Injury that Induces Limited Transient Memory Impairment and Increased Levels of Axon Related Serum Biomarkers. Frontiers in neurology 3: 115.
    1. Goossens K, Mestdagh P, Lefever S, Van Poucke M, Van Zeveren A, et al... (2013) Regulatory microRNA network identification in bovine blastocyst development. Stem cells and development.
    1. Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, et al. (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science (New York, NY) 315: 1137–1140.
    1. Ekdahl Y, Farahani HS, Behm M, Lagergren J, Ohman M (2012) A-to-I editing of microRNAs in the mammalian brain increases during development. Genome research 22: 1477–1487.
    1. Choudhury Y, Tay FC, Lam DH, Sandanaraj E, Tang C, et al. (2012) Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. The Journal of clinical investigation 122: 4059–4076.
    1. Chen H, Shalom-Feuerstein R, Riley J, Zhang SD, Tucci P, et al. (2010) miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochemical and biophysical research communications 394: 921–927.
    1. Decembrini S, Bressan D, Vignali R, Pitto L, Mariotti S, et al. (2009) MicroRNAs couple cell fate and developmental timing in retina. Proceedings of the National Academy of Sciences of the United States of America 106: 21179–21184.
    1. Zhang HY, Zheng SJ, Zhao JH, Zhao W, Zheng LF, et al. (2011) MicroRNAs 144, 145, and 214 are down-regulated in primary neurons responding to sciatic nerve transection. Brain research 1383: 62–70.
    1. Rice AC, Khaldi A, Harvey HB, Salman NJ, White F, et al. (2003) Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Experimental neurology 183: 406–417.
    1. Yi X, Jin G, Zhang X, Mao W, Li H, et al. (2013) Cortical endogenic neural regeneration of adult rat after traumatic brain injury. PloS one 8: e70306.
    1. Zhang L, Yan R, Zhang Q, Wang H, Kang X, et al. (2013) Survivin, a key component of the Wnt/beta-catenin signaling pathway, contributes to traumatic brain injury-induced adult neurogenesis in the mouse dentate gyrus. International journal of molecular medicine 32: 867–875.
    1. Itoh T, Satou T, Hashimoto S, Ito H (2005) Isolation of neural stem cells from damaged rat cerebral cortex after traumatic brain injury. Neuroreport 16: 1687–1691.
    1. Zheng W, ZhuGe Q, Zhong M, Chen G, Shao B, et al. (2013) Neurogenesis in adult human brain after traumatic brain injury. Journal of neurotrauma 30: 1872–1880.
    1. Rola R, Mizumatsu S, Otsuka S, Morhardt DR, Noble-Haeusslein LJ, et al. (2006) Alterations in hippocampal neurogenesis following traumatic brain injury in mice. Experimental neurology 202: 189–199.
    1. Dash PK, Mach SA, Moore AN (2001) Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. Journal of neuroscience research 63: 313–319.
    1. Gao X, Chen J (2013) Moderate traumatic brain injury promotes neural precursor proliferation without increasing neurogenesis in the adult hippocampus. Experimental neurology 239: 38–48.
    1. Bye N, Carron S, Han X, Agyapomaa D, Ng SY, et al. (2011) Neurogenesis and glial proliferation are stimulated following diffuse traumatic brain injury in adult rats. Journal of neuroscience research 89: 986–1000.

Source: PubMed

3
Iratkozz fel