Spinal Cord Imaging Markers and Recovery of Volitional Leg Movement With Spinal Cord Epidural Stimulation in Individuals With Clinically Motor Complete Spinal Cord Injury

Enrico Rejc, Andrew C Smith, Kenneth A Weber 2nd, Beatrice Ugiliweneza, Robert J Bert, Mohammadjavad Negahdar, Maxwell Boakye, Susan J Harkema, Claudia A Angeli, Enrico Rejc, Andrew C Smith, Kenneth A Weber 2nd, Beatrice Ugiliweneza, Robert J Bert, Mohammadjavad Negahdar, Maxwell Boakye, Susan J Harkema, Claudia A Angeli

Abstract

Previous studies have shown that epidural stimulation of the lumbosacral spinal cord (scES) can re-enable lower limb volitional motor control in individuals with chronic, clinically motor complete spinal cord injury (SCI). This observation entails that residual supraspinal connectivity to the lumbosacral spinal circuitry still persisted after SCI, although it was non-detectable when scES was not provided. In the present study, we aimed at exploring further the mechanisms underlying scES-promoted recovery of volitional lower limb motor control by investigating neuroimaging markers at the spinal cord lesion site via magnetic resonance imaging (MRI). Spinal cord MRI was collected prior to epidural stimulator implantation in 13 individuals with chronic, clinically motor complete SCI, and the spared tissue of specific regions of the spinal cord (anterior, posterior, right, left, and total cord) was assessed. After epidural stimulator implantation, and prior to any training, volitional motor control was evaluated during left and right lower limb flexion and ankle dorsiflexion attempts. The ability to generate force exertion and movement was not correlated to any neuroimaging marker. On the other hand, spared tissue of specific cord regions significantly and importantly correlated with some aspects of motor control that include activation amplitude of antagonist (negative correlation) muscles during left ankle dorsiflexion, and electromyographic coordination patterns during right lower limb flexion. The fact that amount and location of spared spinal cord tissue at the lesion site were not related to the ability to generate volitional lower limb movements may suggest that supraspinal inputs through spared spinal cord regions that differ across individuals can result in the generation of lower limb volitional motor output prior to any training when epidural stimulation is provided.

Keywords: epidural stimulation; spinal cord MRI; spinal cord injury; spinal cord lesion; spinal tracts; voluntary movement.

Copyright © 2020 Rejc, Smith, Weber, Ugiliweneza, Bert, Negahdar, Boakye, Harkema and Angeli.

Figures

FIGURE 1
FIGURE 1
Imaging analysis methods. (A) Sagittal and axial slices of the T2-weighted image of a representative participant with a severe lesion. The lesion is identified as the hyperintensity in the spinal cord. (B) A blinded experimenter manually segmented the spinal cord (blue) and lesion (red) from the T2-weighted image. (C) The PAM50 T2-weighted template was then registered to the T2-weighted image using the manually draw spinal cord mask. The transformation was then applied to lesion mask to bring the lesion into template space. The spinal cord mask and lesion mask from (B) are shown transformed to the PAM50 spinal cord template. (D,E) To quantify the axial extent of the spinal cord lesion, the lesion mask in template space was then projected onto the axial plane to create one projected axial image of the composite lesion.
FIGURE 2
FIGURE 2
Imaging results from three representative research participants. (A) Participant A99, with no spared tissue of the spinal cord remaining. (B) Participant B21, who shows minimal spared spinal cord tissue. (C) Participant A110, who presents considerable spared spinal cord tissue. Red, spinal cord damage; blue, spared spinal cord tissue.
FIGURE 3
FIGURE 3
Spinal cord white matter regions and exemplary percent spared tissue. The left column depicts the four white matter regions that were used to quantify the spared tissue correlated with motor outcomes. The right column shows four representative research subjects’ spinal cord damage as well as the percentage of the corresponding white matter region that was spared. The red area indicates the lesioned tissue in each region.
FIGURE 4
FIGURE 4
Number of motor tasks successfully performed are plotted against the amount of spared tissue of representative cord regions.
FIGURE 5
FIGURE 5
Plots of statistically significant and important correlations between amount of spared tissue of specific cord regions and muscle activation outcomes. R, right side; L, left side; RMS, root mean square; SOL, soleus; JPD R MH, amount of isolated activation of R medial hamstrings; JPD Co-co-Low, amount of co-contraction at lower level of activation between right MH and iliopsoas.
FIGURE 6
FIGURE 6
Representative EMG activity modulation and force generation during isometric ankle dorsiflexion attempts performed without (A) and with (B) spinal cord epidural stimulation (scES) by two research participants (A110 and A80). Vertical gray dotted lines: attempt duration. (C) Spared tissue of the anterior cord, which was found inversely correlated with EMG amplitude of L SOL (antagonist muscle) during left ankle dorsiflexion attempts, and of the total cord for the same two participants. L, left side; VL, vastus lateralis; MH, medial hamstrings; TA, tibialis anterior; SOL, soleus. The gray arrow points out the decrease in L SOL EMG activity in response to the volitional attempt. Epidural stimulation electrode configuration (cathodes in black, anodes in red, inactive in white), frequency, pulse width and intensity are reported.
FIGURE 7
FIGURE 7
Representative EMG activity modulation and hip joint movement during right lower limb flexion attempts performed without (A) and with (B) spinal cord epidural stimulation (scES) by two research participants (A101 and B21). Vertical gray dotted lines: attempt duration. (C) Probability density distribution (JPD) of normalized EMG amplitudes between right (R) iliopsoas (IL) and medial hamstrings (MH) calculated during the volitional attempts, and related data points distribution in each of the four identified areas [co-contraction at lower (JPD Co-co-Low) or higher (JPD Co-co-Hi) level of activation; isolated activation of R IL (JPD R IL) or R MH (JPD R MH)]. (D) Spared tissue of the right and total cord, which were found correlated with JPD R MH and JPD Co-co-Low, respectively, during right lower limb flexion attempts. RF, rectus femoris; VL, vastus lateralis; TA, tibialis anterior; SOL, soleus. Epidural stimulation electrode configuration (cathodes in black, anodes in red, inactive in white), frequency, pulse width and intensity are reported.

References

    1. Aarabi B., Sansur C. A., Ibrahimi D. M., Simard J. M., Hersh D. S., Le E., et al. (2017). Intramedullary lesion length on postoperative magnetic resonance imaging is a strong predictor of ASIA impairment scale grade conversion following decompressive surgery in cervical spinal cord injury. Neurosurgery 80 610–620. 10.1093/neuros/nyw053
    1. Alley S., Gilbert G., Wheeler-Kingshott C. G., Samson R. S., Grussu F., Martin A., et al. (2018). “Consensus acquisition protocol for quantitative MRI of the cervical spinal cord at 3T,” in Joint Annual Meeting International Society for Magnetic Resonance in Medicine – European Society for Magnetic Resonance in Medicine and Biology, (Fira de Barcelona: ESMRMB; ).
    1. Angeli C. A., Boakye M., Morton R. A., Vogt J., Benton K., Chen Y., et al. (2018). Recovery of over-ground walking after chronic motor complete spinal cord injury. N. Engl. J. Med. 379 1244–1250. 10.1056/NEJMoa1803588
    1. Angeli C. A., Edgerton V. R., Gerasimenko Y. P., Harkema S. J. (2014). Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137(Pt 5) 1394–1409. 10.1093/brain/awu038
    1. Asboth L., Friedli L., Beauparlant J., Martinez-Gonzalez C., Anil S., Rey E., et al. (2018). Cortico-reticulo-spinal circuit reorganization enables functional recovery after severe spinal cord contusion. Nat. Neurosci. 21 576–588. 10.1038/s41593-018-0093-5
    1. Ball T., Angeli C. A., Rejc E., Mesbah S., Harkema S., Boakye M. (2019). “Correlation of radiographic spinal cord parameters with volitional movement after spinal cord epidural stimulation for chronic traumatic spinal cord injury,” in Proceedings of the Annual Meeting Society for Neuroscience, (Chicago, IL: Society for Neuroscience; ).
    1. Beauparlant J., van den Brand R., Barraud Q., Friedli L., Musienko P., Dietz V., et al. (2013). Undirected compensatory plasticity contributes to neuronal dysfunction after severe spinal cord injury. Brain 136(Pt 11) 3347–3361. 10.1093/brain/awt204
    1. Burns S., Biering-Sorensen F., Donovan W., Graves D. E., Jha A., Johansen M., et al. (2012). International standards for neurological classification of spinal cord injury, revised 2011. Top. Spinal Cord Inj. Rehabil. 18 85–99. 10.1310/sci1801-85
    1. Cloney M. B., Smith Z. A., Weber K. A., II, Parrish T. B. (2018). Quantitative magnetization transfer MRI measurements of the anterior spinal cord region are associated with clinical outcomes in cervical spondylotic myelopathy. Spine (Phila Pa 1976) 43 675–680. 10.1097/brs.0000000000002470
    1. Cote M. P., Murray M., Lemay M. A. (2017). Rehabilitation strategies after spinal cord injury: inquiry into the mechanisms of success and failure. J. Neurotrauma 34 1841–1857. 10.1089/neu.2016.4577
    1. Courtine G., Song B., Roy R. R., Zhong H., Herrmann J. E., Ao Y., et al. (2008). Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat. Med. 14 69–74. 10.1038/nm1682
    1. Crinion J., Ashburner J., Leff A., Brett M., Price C., Friston K. (2007). Spatial normalization of lesioned brains: performance evaluation and impact on fMRI analyses. Neuroimage 37 866–875. 10.1016/j.neuroimage.2007.04.065
    1. Darrow D., Balser D., Netoff T. I., Krassioukov A., Phillips A., Parr A., et al. (2019). Epidural spinal cord stimulation facilitates immediate restoration of dormant motor and autonomic supraspinal pathways after chronic neurologically complete spinal cord injury. J. Neurotrauma 36 2325–2336. 10.1089/neu.2018.6006
    1. De Leener B., Fonov V. S., Collins D. L., Callot V., Stikov N., Cohen-Adad J. (2018). PAM50: unbiased multimodal template of the brainstem and spinal cord aligned with the ICBM152 space. Neuroimage 165 170–179. 10.1016/j.neuroimage.2017.10.041
    1. De Leener B., Levy S., Dupont S. M., Fonov V. S., Stikov N., Louis Collins D., et al. (2017). SCT: spinal cord toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 145(Pt A) 24–43. 10.1016/j.neuroimage.2016.10.009
    1. Dietz V. (1997). Neurophysiology of gait disorders: present and future applications. Electroencephalogr. Clin. Neurophysiol. 103 333–355. 10.1016/s0013-4694(97)00047-7
    1. Dimitrijevic M. R. (1988). Residual motor functions in spinal cord injury. Adv. Neurol. 47 138–155.
    1. Dimitrijevic M. R., Dimitrijevic M. M., Faganel J., Sherwood A. M. (1984). Suprasegmentally induced motor unit activity in paralyzed muscles of patients with established spinal cord injury. Ann. Neurol. 16 216–221. 10.1002/ana.410160208
    1. Dupont S. M., De Leener B., Taso M., Le Troter A., Nadeau S., Stikov N., et al. (2017). Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter. Neuroimage 150 358–372. 10.1016/j.neuroimage.2016.09.026
    1. Edgerton V. R., Roy R. R. (2009). Robotic training and spinal cord plasticity. Brain Res. Bull. 78 4–12. 10.1016/j.brainresbull.2008.09.018
    1. Edgerton V. R., Tillakaratne N. J., Bigbee A. J., de Leon R. D., Roy R. R. (2004). Plasticity of the spinal neural circuitry after injury. Annu. Rev. Neurosci. 27 145–167.
    1. Filli L., Schwab M. E. (2015). Structural and functional reorganization of propriospinal connections promotes functional recovery after spinal cord injury. Neural Regen. Res. 10 509–513. 10.4103/1673-5374.155425
    1. Flanders A. E., Spettell C. M., Tartaglino L. M., Friedman D. P., Herbison G. J. (1996). Forecasting motor recovery after cervical spinal cord injury: value of MR imaging. Radiology 201 649–655. 10.1148/radiology.201.3.8939210
    1. Fonov V. S., Le Troter A., Taso M., De Leener B., Leveque G., Benhamou M., et al. (2014). Framework for integrated MRI average of the spinal cord white and gray matter: the MNI-Poly-AMU template. Neuroimage 102(Pt 2) 817–827. 10.1016/j.neuroimage.2014.08.057
    1. Freund P., Seif M., Weiskopf N., Friston K., Fehlings M. G., Thompson A. J., et al. (2019). MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurol. 18 1123–1135. 10.1016/s1474-4422(19)30138-3
    1. Gad P., Choe J., Nandra M. S., Zhong H., Roy R. R., Tai Y. C., et al. (2013). Development of a multi-electrode array for spinal cord epidural stimulation to facilitate stepping and standing after a complete spinal cord injury in adult rats. J. Neuroeng. Rehabil. 10:2.
    1. Grahn P. J., Lavrov I. A., Sayenko D. G., Van Straaten M. G., Gill M. L., Strommen J. A., et al. (2017). Enabling task-specific volitional motor functions via spinal cord neuromodulation in a human with paraplegia. Mayo Clin. Proc. 92 544–554. 10.1016/j.mayocp.2017.02.014
    1. Hargreaves B. A., Worters P. W., Pauly K. B., Pauly J. M., Koch K. M., Gold G. E. (2011). Metal-induced artifacts in MRI. AJR Am. J. Roentgenol. 197 547–555. 10.2214/ajr.11.7364
    1. Harkema S., Gerasimenko Y., Hodes J., Burdick J., Angeli C., Chen Y., et al. (2011). Effect of epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study. Lancet 377 1938–1947. 10.1016/S0140-6736(11)60547-3
    1. Harkema S. J. (2008). Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain Res. Rev. 57 255–264. 10.1016/j.brainresrev.2007.07.012
    1. Hastie T., Tibshirani R. J., Friedman J. (2009). The Elements of Statistical Learning. Berlin: Springer Series in Statistics.
    1. Hiersemenzel L. P., Curt A., Dietz V. (2000). From spinal shock to spasticity: neuronal adaptations to a spinal cord injury. Neurology 54 1574–1582. 10.1212/wnl.54.8.1574
    1. Huber E., Lachappelle P., Sutter R., Curt A., Freund P. (2017). Are midsagittal tissue bridges predictive of outcome after cervical spinal cord injury? Ann. Neurol. 81 740–748. 10.1002/ana.24932
    1. Hutchison D. L., Roy R. R., Bodine-Fowler S. C., Hodgson J. A., Edgerton V. R. (1989). Electromyographic (EMG) amplitude patterns in the proximal and distal compartments of the cats semitendinosus during various motor tasks. Brain Res. 479 56–64. 10.1016/0006-8993(89)91335-8
    1. Kakulas B. A. (2004). Neuropathology: the foundation for new treatments in spinal cord injury. Spinal Cord 42 549–563. 10.1038/sj.sc.3101670
    1. Knikou M., Smith A. C., Mummidisetty C. K. (2015). Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. J. Neurophysiol. 113 2447–2460. 10.1152/jn.00872.2014
    1. Kursa M. B., Rudnicki M. A. (2010). Feature selection with the boruta package. J. Statis. Softw. 36:30746.
    1. McCoy D. B., Talbott J. F., Wilson M., Mamlouk M. D., Cohen-Adad J., Wilson M., et al. (2017). MRI atlas-based measurement of spinal cord injury predicts outcome in acute flaccid myelitis. AJNR Am. J. Neuroradiol. 38 410–417. 10.3174/ajnr.A5044
    1. McKay W. B., Lim H. K., Priebe M. M., Stokic D. S., Sherwood A. M. (2004). Clinical neurophysiological assessment of residual motor control in post-spinal cord injury paralysis. Neurorehabil. Neural Repair 18 144–153. 10.1177/0888439004267674
    1. McKay W. B., Ovechkin A. V., Vitaz T. W., Terson de Paleville D. G., Harkema S. J. (2011). Neurophysiological characterization of motor recovery in acute spinal cord injury. Spinal Cord 49 421–429. 10.1038/sc.2010.145
    1. Mesbah S., Angeli C. A., Keynton R. S., El-baz A., Harkema S. J. (2017). A novel approach for automatic visualization and activation detection of evoked potentials induced by epidural spinal cord stimulation in individuals with spinal cord injury. PLoS One 12:e0185582. 10.1371/journal.pone.0185582
    1. Mesbah S., Gonnelli F., Angeli C. A., El-Baz A., Harkema S. J., Rejc E. (2019). Neurophysiological markers predicting recovery of standing in humans with chronic motor complete spinal cord injury. Sci. Rep. 9:14474. 10.1038/s41598-019-50938-y
    1. Mishra A. M., Pal A., Gupta D., Carmel J. B. (2017). Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses. J. Physiol. 595 6953–6968. 10.1113/jp274663
    1. Miyanji F., Furlan J. C., Aarabi B., Arnold P. M., Fehlings M. G. (2007). Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome–prospective study with 100 consecutive patients. Radiology 243 820–827. 10.1148/radiol.2433060583
    1. O’Dell D. R., Weber K. A., Berliner J. C., Elliott J. M., Connor J. R., Cummins D. P., et al. (2018). Midsagittal tissue bridges are associated with walking ability in incomplete spinal cord injury: a magnetic resonance imaging case series. J. Spinal Cord Med. 43 268–271. 10.1080/10790268.2018.1527079
    1. R Core Team, (2019). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
    1. Rejc E., Angeli C., Harkema S. (2015). Effects of lumbosacral spinal cord epidural stimulation for standing after chronic complete paralysis in humans. PLoS One 10:e0133998. 10.1371/journal.pone.0133998
    1. Rejc E., Angeli C. A. (2019). Spinal cord epidural stimulation for lower limb motor function recovery in individuals with motor complete spinal cord injury. Phys. Med. Rehabil. Clin. N. Am. 30 337–354. 10.1016/j.pmr.2018.12.009
    1. Rejc E., Angeli C. A., Atkinson D., Harkema S. J. (2017a). Motor recovery after activity-based training with spinal cord epidural stimulation in a chronic motor complete paraplegic. Sci. Rep. 7:13476. 10.1038/s41598-017-14003-w
    1. Rejc E., Angeli C. A., Bryant N., Harkema S. J. (2017b). Effects of stand and step training with epidural stimulation on motor function for standing in chronic complete paraplegics. J. Neurotrauma 34 1787–1802. 10.1089/neu.2016.4516
    1. Rosenzweig E. S., Brock J. H., Culbertson M. D., Lu P., Moseanko R., Edgerton V. R., et al. (2009). Extensive spinal decussation and bilateral termination of cervical corticospinal projections in rhesus monkeys. J. Comp. Neurol. 513 151–163. 10.1002/cne.21940
    1. Rosenzweig E. S., Courtine G., Jindrich D. L., Brock J. H., Ferguson A. R., Strand S. C., et al. (2010). Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat. Neurosci. 13 1505–1510. 10.1038/nn.2691
    1. Sayenko D. G., Angeli C., Harkema S. J., Edgerton V. R., Gerasimenko Y. P. (2014). Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. J. Neurophysiol. 111 1088–1099. 10.1152/jn.00489.2013
    1. Shi X., Levine E., Weber H., Hargreaves B. A. (2019). Accelerated imaging of metallic implants using model-based nonlinear reconstruction. Magn. Reson. Med. 81 2247–2263. 10.1002/mrm.27536
    1. Smith A. C., Weber K. A., II, O’Dell D. R., Parrish T. B., Wasielewski M., Elliott J. M. (2018). Lateral corticospinal tract damage correlates with motor output in incomplete spinal cord injury. Arch. Phys. Med. Rehabil. 99 660–666. 10.1016/j.apmr.2017.10.002
    1. Smith A. C., Weber K. A., Parrish T. B., Hornby T. G., Tysseling V. M., McPherson J. G., et al. (2017). Ambulatory function in motor incomplete spinal cord injury: a magnetic resonance imaging study of spinal cord edema and lower extremity muscle morphometry. Spinal Cord 55 672–678. 10.1038/sc.2017.18
    1. Steward O., Zheng B., Tessier-Lavigne M., Hofstadter M., Sharp K., Yee K. M. (2008). Regenerative growth of corticospinal tract axons via the ventral column after spinal cord injury in mice. J. Neurosci. 28 6836–6847. 10.1523/jneurosci.5372-07.2008
    1. Talbott J. F., Huie J. R., Ferguson A. R., Bresnahan J. C., Beattie M. S., Dhall S. S. (2019). MR imaging for assessing injury severity and prognosis in acute traumatic spinal cord injury. Radiol. Clin. N. Am. 57 319–339. 10.1016/j.rcl.2018.09.004
    1. Talbott J. F., Whetstone W. D., Readdy W. J., Ferguson A. R., Bresnahan J. C., Saigal R., et al. (2015). The brain and spinal injury center score: a novel, simple, and reproducible method for assessing the severity of acute cervical spinal cord injury with axial T2-weighted MRI findings. J. Neurosurg. Spine 23 495–504. 10.3171/2015.1.Spine141033
    1. Vallotton K., Huber E., Sutter R., Curt A., Hupp M., Freund P. (2019). Width and neurophysiologic properties of tissue bridges predict recovery after cervical injury. Neurology 92 e2793–e2802. 10.1212/wnl.0000000000007642
    1. Wagner F. B., Mignardot J. B., Le Goff-Mignardot C. G., Demesmaeker R., Komi S., Capogrosso M., et al. (2018). Targeted neurotechnology restores walking in humans with spinal cord injury. Nature 563 65–71. 10.1038/s41586-018-0649-2
    1. Weidner N., Ner A., Salimi N., Tuszynski M. H. (2001). Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc. Natl. Acad. Sci. U.S.A. 98 3513–3518. 10.1073/pnas.051626798
    1. Winchester P., McColl R., Querry R., Foreman N., Mosby J., Tansey K., et al. (2005). Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehabil. Neural Repair 19 313–324. 10.1177/1545968305281515

Source: PubMed

3
Iratkozz fel