Effect of CYP2C19 genotypes on tamoxifen metabolism and early-breast cancer relapse

A B Sanchez-Spitman, J J Swen, V O Dezentjé, D J A R Moes, H Gelderblom, H J Guchelaar, A B Sanchez-Spitman, J J Swen, V O Dezentjé, D J A R Moes, H Gelderblom, H J Guchelaar

Abstract

CYP2C19*2 and CYP2C19*17 might influence tamoxifen metabolism and clinical outcome. Our aim was to investigate the effect of CYP2C19 genotypes on tamoxifen concentrations and metabolic ratios (MRs) and breast cancer recurrence in a large cohort of Caucasian women. Genetic variants (CYP2D6 and CYP2C19 genotypes), tamoxifen and metabolites concentrations, baseline characteristics, and breast cancer recurrence from the CYPTAM study (NTR1509) were used. CYP2C19*2 and CYP2C19*17 genotypes were evaluated as alleles and as groups based on CYP2D6 genotypes (high, intermediate and low activity). Log-rank test and Kaplan-Meier analysis were used to evaluate differences in recurrence defined as relapse-free survival (RFS). Classification tree analyses (CTAs) were conducted to assess the levels of interactions per polymorphism (CYP2D6 and CYP2C19 genotypes) on endoxifen concentrations. No differences in mean concentrations and MRs were observed when comparing CYP2C19 genotypes (CYP2C19*1/*1; CYP2C19*1/*2; CYP2C19*2/*2; CYP2C19*1/*17; CYP2C19*17/*17; CYP2C19*2/*17). Only significant differences (p value < 0.05) in mean concentrations and MRs were observed when comparing tamoxifen activity groups (high, intermediate and low activity). A log-rank test did not find an association across CYP2C19 genotypes (p value 0.898). CTAs showed a significant relationship between CYP2D6 and endoxifen (p value < 0.0001), but no association with CYP2C19 genotypes was found. CYP2C19 polymorphisms do not have a significant impact on tamoxifen metabolism or breast cancer relapse.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
Tamoxifen metabolism.
Figure 2
Figure 2
Association of CYP2C19 genotypes with tamoxifen (A), 4-hydroxy-tamoxifen (B), and NDM-tamoxifen (C) and endoxifen (D) concentration levels. The CYP2C19 genotypes presented are: CYP2C19*1/*1; CYP2C19*1/*2; CYP2C19*2/*2; CYP2C19*1/*17; CYP2C19*17/*17; CYP2C19*2/*17.
Figure 3
Figure 3
Kaplan–Meier curve for RFS by CYP2C19 genotypes. Log-rank test p value: 0.898. RFS Relapse-free survival.
Figure 4
Figure 4
Classification Tree analyses for endoxifen concentrations and CYP2D6 predicted phenotypes. EM extensive metabolizer, hetEM heterogenous extensive metabolizer, IM intermediate metabolizer, N number of individuals, PM poor metabolizer, SD standard deviation, UM ultrarapid metabolizer.

References

    1. WHO Media Centre: Cancer fact sheet (2018).
    1. Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends–an update. Cancer Epidemiol. Biomark. Prev. 2016;25:16–27. doi: 10.1158/1055-9965.EPI-15-0578.
    1. Burstein HJ, et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American society of clinical oncology clinical practice guideline focused update. J. Clin. Oncol. 2014;32:2255–2269. doi: 10.1200/JCO.2013.54.2258.
    1. Senkus E, et al. Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015;26(Suppl 5):v8–30. doi: 10.1093/annonc/mdv298.
    1. Early Breast Cancer Trialists’ Collaborative G, et al. Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials. Lancet. 2011;378:771–784. doi: 10.1016/S0140-6736(11)60993-8.
    1. Schiavon G, Smith IE. Endocrine therapy for advanced/metastatic breast cancer. Hematol. Oncol. Clin. N. Am. 2013;27:715–736. doi: 10.1016/j.hoc.2013.05.004.
    1. de Vries Schultink AH, Zwart W, Linn SC, Beijnen JH, Huitema AD. Effects of pharmacogenetics on the pharmacokinetics and pharmacodynamics of tamoxifen. Clin. Pharmacokinet. 2015;54:797–810. doi: 10.1007/s40262-015-0273-3.
    1. Klein DJ, et al. PharmGKB summary: tamoxifen pathway, pharmacokinetics. Pharmacogenet. Genom. 2013;23:643–647. doi: 10.1097/FPC.0b013e3283656bc1.
    1. Brauch H, Murdter TE, Eichelbaum M, Schwab M. Pharmacogenomics of tamoxifen therapy. Clin. Chem. 2009;55:1770–1782. doi: 10.1373/clinchem.2008.121756.
    1. Stearns V, et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J. Natl. Cancer Inst. 2003;95:1758–1764. doi: 10.1093/jnci/djg108.
    1. Lim YC, Desta Z, Flockhart DA, Skaar TC. Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother. Pharmacol. 2005;55:471–478. doi: 10.1007/s00280-004-0926-7.
    1. Goetz MP, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J. Clin. Oncol. 2005;23:9312–9318. doi: 10.1200/JCO.2005.03.3266.
    1. Rae JM, et al. CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J Natl Cancer Inst. 2012;104:452–460. doi: 10.1093/jnci/djs126.
    1. Sanchez Spitman AB, et al. Effect of CYP3A4*22, CYP3A5*3, and CYP3A combined genotypes on tamoxifen metabolism. Eur. J. Clin. Pharmacol. 2017;73:1589–1598. doi: 10.1007/s00228-017-2323-2.
    1. Murdter TE, et al. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin. Pharmacol. Ther. 2011;89:708–717. doi: 10.1038/clpt.2011.27.
    1. Binkhorst L, Mathijssen RH, Jager A, Van GT. Individualization of tamoxifen therapy: much more than just CYP2D6 genotyping. Cancer Treat. Rev. 2015;41:289–299. doi: 10.1016/j.ctrv.2015.01.002.
    1. Pharmacogene Variation Consortium. CYP2C19 variation. Vol. 2018 (2018).
    1. Lim JS, et al. Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. Br. J. Clin. Pharmacol. 2011;71:737–750. doi: 10.1111/j.1365-2125.2011.03905.x.
    1. Gjerde J, et al. Associations between tamoxifen, estrogens, and FSH serum levels during steady state tamoxifen treatment of postmenopausal women with breast cancer. BMC Cancer. 2010;10:313. doi: 10.1186/1471-2407-10-313.
    1. Lim JS, et al. Association of CYP2C19*2 and associated haplotypes with lower norendoxifen concentrations in tamoxifen-treated Asian breast cancer patients. Br. J. Clin. Pharmacol. 2016;81:1142–1152. doi: 10.1111/bcp.12886.
    1. Lu WJ, et al. The tamoxifen metabolite norendoxifen is a potent and selective inhibitor of aromatase (CYP19) and a potential lead compound for novel therapeutic agents. Breast Cancer Res. Treat. 2012;133:99–109. doi: 10.1007/s10549-011-1699-4.
    1. Lv W, Liu J, Lu D, Flockhart DA, Cushman M. Synthesis of mixed (E, Z)-, (E)-, and (Z)-norendoxifen with dual aromatase inhibitory and estrogen receptor modulatory activities. J. Med. Chem. 2013;56:4611–4618. doi: 10.1021/jm400364h.
    1. Schroth W, et al. Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J. Clin. Oncol. 2007;25:5187–5193. doi: 10.1200/JCO.2007.12.2705.
    1. Bai L, et al. Association of CYP2C19 polymorphisms with survival of breast cancer patients using tamoxifen: results of a meta- analysis. Asian Pac. J. Cancer Prev. 2014;15:8331–8335. doi: 10.7314/APJCP.2014.15.19.8331.
    1. Moyer AM, et al. SULT1A1, CYP2C19 and disease-free survival in early breast cancer patients receiving tamoxifen. Pharmacogenomics. 2011;12:1535–1543. doi: 10.2217/pgs.11.97.
    1. Damkier P, et al. CYP2C19*2 and CYP2C19*17 variants and effect of tamoxifen on breast cancer recurrence: analysis of the International tamoxifen pharmacogenomics consortium dataset. Sci. Rep. 2017;7:7727. doi: 10.1038/s41598-017-08091-x.
    1. van Schaik RH, et al. The CYP2C19*2 genotype predicts tamoxifen treatment outcome in advanced breast cancer patients. Pharmacogenomics. 2011;12:1137–1146. doi: 10.2217/pgs.11.54.
    1. Beelen K, et al. CYP2C19 2 predicts substantial tamoxifen benefit in postmenopausal breast cancer patients randomized between adjuvant tamoxifen and no systemic treatment. Breast Cancer Res. Treat. 2013;139:649–655. doi: 10.1007/s10549-013-2568-0.
    1. Ruiter R, et al. CYP2C19*2 polymorphism is associated with increased survival in breast cancer patients using tamoxifen. Pharmacogenomics. 2010;11:1367–1375. doi: 10.2217/pgs.10.112.
    1. Balian JD, et al. The hydroxylation of omeprazole correlates with S-mephenytoin metabolism: a population study. Clin. Pharmacol. Ther. 1995;57:662–669. doi: 10.1016/0009-9236(95)90229-5.
    1. Herrlin K, et al. Slow chloroguanide metabolism in Tanzanians compared with white subjects and Asian subjects confirms a decreased CYP2C19 activity in relation to genotype. Clin. Pharmacol. Ther. 2000;68:189–198. doi: 10.1067/mcp.2000.108583.
    1. Sanchez-Spitman A, et al. Tamoxifen pharmacogenetics and metabolism: results from the prospective CYPTAM study. J. Clin. Oncol. 2019;37:636–646. doi: 10.1200/JCO.18.00307.
    1. Fernandez-Santander A, et al. Relationship between genotypes Sult1a2 and Cyp2d6 and tamoxifen metabolism in breast cancer patients. PLoS ONE. 2013;8:e70183. doi: 10.1371/journal.pone.0070183.
    1. Sanchez-Spitman AB, et al. Genetic polymorphisms of 3'-untranslated region of SULT1A1 and their impact on tamoxifen metabolism and efficacy. Breast Cancer Res. Treat. 2018;172:401–411. doi: 10.1007/s10549-018-4923-7.
    1. Teunissen SF, et al. Development and validation of a quantitative assay for the determination of tamoxifen and its five main phase I metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011;879:1677–1685. doi: 10.1016/j.jchromb.2011.04.011.
    1. Tamminga WJ, et al. The prevalence of CYP2D6 and CYP2C19 genotypes in a population of healthy Dutch volunteers. Eur. J. Clin. Pharmacol. 2001;57:717–722. doi: 10.1007/s002280100359.
    1. Sugimoto K, Uno T, Yamazaki H, Tateishi T. Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population. Br. J. Clin. Pharmacol. 2008;65:437–439. doi: 10.1111/j.1365-2125.2007.03057.x.
    1. Pander J, Wessels JA, Mathijssen RH, Gelderblom H, Guchelaar HJ. Pharmacogenetics of tomorrow: the 1 + 1 = 3 principle. Pharmacogenomics. 2010;11:1011–1017. doi: 10.2217/pgs.10.87.
    1. Klomp SD, Manson ML, Guchelaar HJ, Swen JJ. Phenoconversion of cytochrome P450 metabolism: a systematic review. J. Clin. Med. 2020;9:2890. doi: 10.3390/jcm9092890.

Source: PubMed

3
Iratkozz fel