[Strategies for reducing the CT radiation dose]

S T Schindera, C Nauer, R Treier, P Trueb, G von Allmen, P Vock, Z Szucs-Farkas, S T Schindera, C Nauer, R Treier, P Trueb, G von Allmen, P Vock, Z Szucs-Farkas

Abstract

The rapid technical advances in computed tomography have led to an increased number of clinical indications. Unfortunately, at the same time the radiation exposure to the population has also increased due to the increased total number of CT examinations. In the last few years various publications have demonstrated the feasibility of radiation dose reduction for CT examinations with no compromise in image quality and loss in interpretation accuracy. The majority of the proposed methods for dose optimization are easy to apply and are independent of the detector array configuration. This article reviews indication-dependent principles (e.g. application of reduced tube voltage for CT angiography, selection of the collimation and the pitch, reducing the total number of imaging series, lowering the tube voltage and tube current for non-contrast CT scans), manufacturer-dependent principles (e.g. accurate application of automatic modulation of tube current, use of adaptive image noise filter and use of iterative image reconstruction) and general principles (e.g. appropriate patient-centering in the gantry, avoiding over-ranging of the CT scan, lowering the tube voltage and tube current for survey CT scans) which lead to radiation dose reduction.

References

    1. Invest Radiol. 2008 Dec;43(12):871-6
    1. Eur Radiol. 1996;6(4):485-8
    1. Radiology. 2006 Dec;241(3):899-907
    1. Acad Radiol. 2009 Aug;16(8):997-1002
    1. Radiology. 2009 Aug;252(2):433-40
    1. Radiology. 2008 Nov;249(2):661-70
    1. AJR Am J Roentgenol. 2008 Feb;190(2):W100-5
    1. Rofo. 1996 Nov;165(5):462-5
    1. Rofo. 2010 Mar;182(3):248-53
    1. Radiologe. 2008 Mar;48(3):243-8
    1. Radiology. 2004 Oct;233(1):241-9
    1. Invest Radiol. 2008 Jun;43(6):447-52
    1. AJR Am J Roentgenol. 2005 Dec;185(6):1525-30
    1. Eur Radiol. 2009 May;19(5):1156-60
    1. AJR Am J Roentgenol. 2007 Feb;188(2):547-52
    1. Arch Intern Med. 2009 Dec 14;169(22):2071-7
    1. AJR Am J Roentgenol. 2010 Jan;194(1):191-9
    1. J Comput Assist Tomogr. 2006 May-Jun;30(3):391-7
    1. Eur Radiol. 2008 Sep;18(9):1809-17
    1. Invest Radiol. 2006 Jan;41(1):1-7
    1. N Engl J Med. 2007 Nov 29;357(22):2277-84
    1. AJR Am J Roentgenol. 2009 Sep;193(3):764-71
    1. Radiology. 2004 Aug;232(2):409-14
    1. Radiology. 2004 Sep;232(3):791-7
    1. Eur Radiol. 2007 Jul;17(7):1885-91
    1. JACC Cardiovasc Imaging. 2009 Aug;2(8):940-6
    1. Eur Radiol. 2008 Jun;18(6):1206-14
    1. Korean J Radiol. 2009 Mar-Apr;10(2):156-63
    1. Eur Radiol. 2005 Feb;15(2):334-41
    1. Acta Radiol. 2008 Apr;49(3):303-9
    1. AJR Am J Roentgenol. 2005 Aug;185(2):509-15
    1. Eur J Radiol. 2009 Oct;72(1):181-7
    1. Radiology. 2008 Nov;249(2):692-700
    1. Eur Radiol. 1998;8(4):664-7
    1. Eur Radiol. 2009 Oct;19(10):2518-22
    1. Eur Radiol. 2009 Aug;19(8):1914-22
    1. Eur Radiol. 2008 Aug;18(8):1674-82
    1. Radiology. 2010 Jan;254(1):145-53
    1. Radiology. 2008 Nov;249(2):682-91
    1. Radiology. 2010 May;255(2):508-16
    1. Radiologe. 2008 Mar;48(3):229-42
    1. AJR Am J Roentgenol. 2008 Jan;190(1):W54-61
    1. AJNR Am J Neuroradiol. 2009 Jan;30(1):155-9
    1. Radiographics. 2006 Mar-Apr;26(2):503-12
    1. Radiology. 2007 Nov;245(2):577-83

Source: PubMed

3
Iratkozz fel