The Gut Microbiota during a Behavioral Weight Loss Intervention

Maggie A Stanislawski, Daniel N Frank, Sarah J Borengasser, Danielle M Ostendorf, Diana Ir, Purevsuren Jambal, Kristen Bing, Liza Wayland, Janet C Siebert, Daniel H Bessesen, Paul S MacLean, Edward L Melanson, Victoria A Catenacci, Maggie A Stanislawski, Daniel N Frank, Sarah J Borengasser, Danielle M Ostendorf, Diana Ir, Purevsuren Jambal, Kristen Bing, Liza Wayland, Janet C Siebert, Daniel H Bessesen, Paul S MacLean, Edward L Melanson, Victoria A Catenacci

Abstract

Altered gut microbiota has been linked to obesity and may influence weight loss. We are conducting an ongoing weight loss trial, comparing daily caloric restriction (DCR) to intermittent fasting (IMF) in adults who are overweight or obese. We report here an ancillary study of the gut microbiota and selected obesity-related parameters at the baseline and after the first three months of interventions. During this time, participants experienced significant improvements in clinical health measures, along with altered composition and diversity of fecal microbiota. We observed significant associations between the gut microbiota features and clinical measures, including weight and waist circumference, as well as changes in these clinical measures over time. Analysis by intervention group found between-group differences in the relative abundance of Akkermansia in response to the interventions. Our results provide insight into the impact of baseline gut microbiota on weight loss responsiveness as well as the early effects of DCR and IMF on gut microbiota.

Keywords: intermittent fasting; microbiota; obesity; weight loss.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Study design and CONSORT Diagram for DRIFT2 and this ancillary study. (A) DRIFT2 is a 12-month behavioral weight loss intervention of daily caloric restriction (DCR) versus intermittent fasting (IMF) with data collections involving anthropometry, blood and stool collections at the time increments shown. There is also a follow-up data collection six-months post-intervention. This ancillary study focuses on measures collected at baseline and three months. (B) The DRIFT2 study assessed 86 individuals and randomized 71 (34 DCR and 37 IMF) in Cohorts 1 and 2. There were nine individuals from DCR and three from IMF lost to follow-up. The gut microbiome analyses involved 25 individuals randomized to DCR and 34 to IMF.
Figure 2
Figure 2
Clinical characteristics of DRIFT2 participants. (A) From baseline to three months of the intervention, participants (n = 59) lost significant weight and waist circumference as shown in these violin plots. (B) Blood-based clinical health measures for DRIFT2 participants were assessed at baseline but not at three months. This tables shows the number of participants meeting each of the criteria for metabolic syndrome (MetS) at baseline (n = 56). (C) These violin plots show the distribution of metabolic syndrome (MetS) score (n = 56), which is the total number of components that define MetS that exceed the thresholds shown in (B), and of the components of MetS. BP: blood pressure; MetS: metabolic syndrome; HDL: high density lipoprotein.
Figure 3
Figure 3
Changes in the overall gut microbiota of DRIFT2 participants from baseline to three months. The overall gut microbiota community structure (beta-diversity) shifted significantly from baseline to three months (p < 0.001 for weighted and unweighted UniFrac metrics). (A) Average relative abundance of the most prevalent gut microbiota phyla among study participants at baseline (n = 56) and three months (n = 55). (B) Average relative abundance among study participants at baseline (n = 56) and three months (n = 55) of the most prevalent gut microbiota genera and those that changed significantly from baseline to three months. (C) Relative abundance of the most prevalent gut microbiota phyla for DCR and IMF study participants at baseline (n = 25 DCR/31 IMF) and three months (n = 22 DCR / 33 IMF). (D) Relative abundance of the most prevalent gut microbiota genera and those that changed significantly for DCR and IMF study participants at baseline (n = 25 DCR / 31 IMF) and three months (n = 22 DCR/33 IMF). (E) Gut microbiota taxa showing significant (FDR p < 0.1) overall change from baseline to three months. The y-axis shows the regression estimate from longitudinal models (using the ANCOM method, controlling for age, sex, intervention group, time and an interaction between intervention group and time, for n = 104 samples from 52 individuals) for the scaled proportion relative abundance of each taxa (with one unit corresponding to one standard deviation) on the x-axis at three months relative to baseline. (F) These plots show the change from baseline to three months for four indices of alpha-diversity: Observed OTUs, Evenness, Shannon diversity index, and Faith’s Phylogenetic Diversity. These indices reflect different aspects of diversity, such as the richness, evenness, and phylogenetic relatedness of the organisms detected in the samples. All alpha-diversity indices increased significantly over the first three months of the intervention based on linear mixed models of the 111 samples from 59 individuals, controlling for age, sex, intervention group, and time (interactions between intervention group and time were not significant and, thus, not included). OTUs: operational taxonomic units (clusters of organisms that are grouped by gene sequence similarity); PD: Phylogenetic Diversity.
Figure 4
Figure 4
Cross-sectional associations between the gut microbiota and clinical health measures. This plot shows the cross-sectional associations between clinical health measures and the overall gut microbiota composition at baseline (upper panel; n = 56) and three months (lower panel; n = 55) based on permutational ANOVA models, controlling for age and sex, as well as intervention group for analyses of data from three months. The color shows the p-value for the association, and the size of the circles represents the amount of variation explained (R2) in the overall gut microbiota composition as quantified by weighted (left) and unweighted (right) UniFrac metrics. While numerous clinical measures were collected at baseline, including all of the components of MetS, weight and waist circumference were the primary clinical measures collected at three months.
Figure 5
Figure 5
Associations between the gut microbiota and change in clinical health measures. (A) Abundance of the plotted genera were identified as the most predictive at baseline of percent change in weight and in waist circumference from baseline to three months using a random forest-based prediction method called VSURF (n = 56). Linear regression modeling (controlling for age, sex, and intervention group, and evaluating the interaction between the taxon and intervention group) was used to help interpret the results. The forest plot shows regression estimates (x-axis) for one standard deviation change in the relative abundance of the taxon in models predicting percent change in the clinical measure. Lower beta values indicate that greater abundance of the taxon correlate with greater decreases in the clinical measure and vice versa. Some of the selected taxa show different relationships with the outcomes among DCR (red) versus IMF (blue). For example, greater abundance of Subdoligranulum was associated with greater weight loss among IMF but not among DCR. Some selected predictors do not show statistically significant linear relationships with change in the clinical measure, but they may interact with each other in complex ways in relation to the outcome. “Other” genera indicate sequences that could only be classified to the family-level. (B) Change in the abundance of the shown taxa from baseline to three months were identified as the most predictive of percent change in weight and in waist circumference from baseline to three months using a random forest-based prediction method called VSURF (n = 52). Linear regression modeling (controlling for age, sex, and intervention group, and evaluating the interaction between the taxon and intervention group) was used to help interpret the results. Lachnospiraceae other showed a different relationship with percent weight loss among DCR versus IMF, with increases in abundance associated with greater weight loss only among DCR. While some selected predictors do not show statistically significant linear relationships with change in the clinical measure (shown in grey), these selected taxa may interact with each other in complex ways in relation to the outcome. “Other” genera indicate sequences that could only be classified to the family-level. MetS: Metabolic syndrome; HDL: High density lipoprotein; DCR: Daily caloric restriction; IMF: Intermittent fasting.
Figure 6
Figure 6
Changes in the gut microbiota of DRIFT2 participants from baseline to three months by intervention group. (A) This plots shows the change from baseline to three months by intervention group of four indices of alpha-diversity: Observed OTUs, Evenness, Shannon diversity index, and Faith’s Phylogenetic Diversity (PD), which reflect different aspects of alpha-diversity, such as the richness, evenness, and phylogenetic relatedness of the organisms detected in the samples. All alpha-diversity indices, except Faith’s PD, showed significant increases over time in both DCR (n = 47 samples from 25 individuals) and IMF (n = 64 samples from 34 individuals) groups based on linear mixed models by intervention group, controlling for age, sex, and time. There were not significant differences between intervention groups (DCR versus IMF) in the change in alpha-diversity over time (interaction p-values ≥ 0.48). (B) Only one gut microbiota taxon (Akkermansia) showed significant differences between intervention groups in terms of the relative abundance change from baseline to three months. The y-axis shows the regression estimate from longitudinal models (using the ANCOM method using the ANCOM method, controlling for age, sex, intervention group, time, and an interaction between intervention group and time, for n = 104 samples from 52 individuals; 22 DCR and 30 IMF) for the change in proportion relative abundance relative to DCR at baseline. The * indicates significant change over time within the intervention group.

References

    1. Virani Salim S., Alvaro A., Benjamin Emelia J., Bittencourt Marcio S., Callaway Clifton W., Carson April P., Chamberlain Alanna M., Chang Alexander R., Cheng S., Delling Francesca N., et al. Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association. Circulation. 2020;141:e139–e596. doi: 10.1161/CIR.0000000000000757.
    1. Mattson M.P., Wan R. Beneficial Effects of Intermittent Fasting and Caloric Restriction on the Cardiovascular and Cerebrovascular Systems. J. Nutr. Biochem. 2005;16:129–137. doi: 10.1016/j.jnutbio.2004.12.007.
    1. Jensen M.D., Ryan D.H., Apovian C.M., Ard J.D., Comuzzie A.G., Donato K.A., Hu F.B., Hubbard V.S., Jakicic J.M., Kushner R.F., et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J. Am. Coll. Cardiol. 2014;63:2985–3023. doi: 10.1016/j.jacc.2013.11.004.
    1. Marek R.J., Coulon S.M., Brown J.D., Lydecker J.A., Marek S., Malcolm R., O’Neil P.M. Characteristics of Weight Loss Trajectories in a Comprehensive Lifestyle Intervention. Obesity. 2017;25:2062–2067. doi: 10.1002/oby.21942.
    1. Greaves C., Poltawski L., Garside R., Briscoe S. Understanding the Challenge of Weight Loss Maintenance: A Systematic Review and Synthesis of Qualitative Research on Weight Loss Maintenance. Health Psychol. Rev. 2017;11:145–163. doi: 10.1080/17437199.2017.1299583.
    1. Chen R., Snyder M. Promise of Personalized Omics to Precision Medicine. Wires Syst. Biol. Med. 2013;5:73–82. doi: 10.1002/wsbm.1198.
    1. DiBaise J.K., Frank D.N., Mathur R. Impact of the Gut Microbiota on the Development of Obesity: Current Concepts. Am. J. Gastroenterol. Suppl. 2012;1:22–27. doi: 10.1038/ajgsup.2012.5.
    1. Maruvada P., Leone V., Kaplan L.M., Chang E.B. The Human Microbiome and Obesity: Moving beyond Associations. Cell Host Microbe. 2017;22:589–599. doi: 10.1016/j.chom.2017.10.005.
    1. Sanna S., van Zuydam N.R., Mahajan A., Kurilshikov A., Vila A.V., Võsa U., Mujagic Z., Masclee A.A.M., Jonkers D.M.A.E., Oosting M., et al. Causal Relationships among the Gut Microbiome, Short-Chain Fatty Acids and Metabolic Diseases. Nat. Genet. 2019;51:600. doi: 10.1038/s41588-019-0350-x.
    1. Torkamani A., Topol E. Polygenic Risk Scores Expand to Obesity. Cell. 2019;177:518–520. doi: 10.1016/j.cell.2019.03.051.
    1. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. A Core Gut Microbiome in Obese and Lean Twins. Nature. 2009;457:480–484. doi: 10.1038/nature07540.
    1. Klimentidis Y.C., Bea J.W., Lohman T., Hsieh P.-S., Going S., Chen Z. High Genetic Risk Individuals Benefit Less from Resistance Exercise Intervention. Int. J. Obes. 2015;39:1371–1375. doi: 10.1038/ijo.2015.78.
    1. Kunnackal G.J., Wang L., Nanavati J., Twose C., Singh R., Mullin G. Dietary Alteration of the Gut Microbiome and Its Impact on Weight and Fat Mass: A Systematic Review and Meta-Analysis. Genes. 2018;9:167. doi: 10.3390/genes9030167.
    1. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature. 2006;444:1027–1131. doi: 10.1038/nature05414.
    1. Ridaura V.K., Faith J.J., Rey F.E., Cheng J., Duncan A.E., Kau A.L., Griffin N.W., Lombard V., Henrissat B., Bain J.R., et al. Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice. Science. 2013;341:1241214. doi: 10.1126/science.1241214.
    1. Meijnikman A.S., Gerdes V.E., Nieuwdorp M., Herrema H. Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans. Endocr. Rev. 2018;39:133–153. doi: 10.1210/er.2017-00192.
    1. Seganfredo F.B., Blume C.A., Moehlecke M., Giongo A., Casagrande D.S., Spolidoro J.V.N., Padoin A.V., Schaan B.D., Mottin C.C. Weight-Loss Interventions and Gut Microbiota Changes in Overweight and Obese Patients: A Systematic Review: Weight-Loss Impact on Gut Microbiota. Obes. Rev. 2017;18:832–851. doi: 10.1111/obr.12541.
    1. Wang S., Huang M., You X., Zhao J., Chen L., Wang L., Luo Y., Chen Y. Gut Microbiota Mediates the Anti-Obesity Effect of Calorie Restriction in Mice. Sci. Rep. 2018;8:13037. doi: 10.1038/s41598-018-31353-1.
    1. Li G., Xie C., Lu S., Nichols R.G., Tian Y., Li L., Patel D., Ma Y., Brocker C.N., Yan T., et al. Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota. Cell Metab. 2017;26:672–685.e4. doi: 10.1016/j.cmet.2017.08.019.
    1. Cotillard A., Kennedy S.P., Kong L.C., Prifti E., Pons N., Le Chatelier E., Almeida M., Quinquis B., Levenez F., Galleron N., et al. Dietary Intervention Impact on Gut Microbial Gene Richness. Nature. 2013;500:585–588. doi: 10.1038/nature12480.
    1. Dansinger M.L., Gleason J.A., Griffith J.L., Selker H.P., Schaefer E.J. Comparison of the Atkins, Ornish, Weight Watchers, and Zone Diets for Weight Loss and Heart Disease Risk Reduction—A Randomized Trial. JAMA. 2005;293:43–53. doi: 10.1001/jama.293.1.43.
    1. Ross R., Neeland I.J., Yamashita S., Shai I., Seidell J., Magni P., Santos R.D., Arsenault B., Cuevas A., Hu F.B., et al. Waist Circumference as a Vital Sign in Clinical Practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020;16:177–189. doi: 10.1038/s41574-019-0310-7.
    1. Siebert J.C., Stanislawski M.A., Zaman A., Ostendorf D.M., Konigsberg I.R., Jambal P., Ir D., Bing K., Wayland L., Scorsone J.J., et al. Multiomic Predictors of Short-Term Weight Loss and Clinical Outcomes During a Behavioral-Based Weight Loss Intervention. Obesity. 2021;29:859–869. doi: 10.1002/oby.23127.
    1. Donnelly J.E., Blair S.N., Jakicic J.M., Manore M.M., Rankin J.W., Smith B.K. Appropriate Physical Activity Intervention Strategies for Weight Loss and Prevention of Weight Regain for Adults. Med. Sci. Sports Exerc. 2009;41:459–471. doi: 10.1249/MSS.0b013e3181949333.
    1. Leavitt M.O. 2008 Physical Activity Guidelines for Americans. U.S. Department of Health and Human Services; Washington, DC, USA: 2008. p. 76.
    1. Peters J.C., Wyatt H.R., Foster G.D., Pan Z., Wojtanowski A.C., Veur S.S.V., Herring S.J., Brill C., Hill J.O. The Effects of Water and Non-Nutritive Sweetened Beverages on Weight Loss during a 12-Week Weight Loss Treatment Program. Obesity. 2014;22:1415–1421. doi: 10.1002/oby.20737.
    1. Wyatt H.R., Jortberg B.T., Babbel C., Garner S., Dong F., Grunwald G.K., Hill J.O. Weight Loss in a Community Initiative That Promotes Decreased Energy Intake and Increased Physical Activity and Dairy Consumption: Calcium Weighs-In. J. Phys. Act. Health. 2008;5:28–44. doi: 10.1123/jpah.5.1.28.
    1. Atkin A.J., Gorely T., Clemes S.A., Yates T., Edwardson C., Brage S., Salmon J., Marshall S.J., Biddle S.J. Methods of Measurement in Epidemiology: Sedentary Behaviour. Int. J. Epidemiol. 2012;41:1460–1471. doi: 10.1093/ije/dys118.
    1. Lyden K., Keadle S.K., Staudenmayer J., Freedson P.S. The ActivPALTM Accurately Classifies Activity Intensity Categories in Healthy Adults. Med. Sci. Sports Exerc. 2017;49:1022–1028. doi: 10.1249/MSS.0000000000001177.
    1. Jobira B., Frank D.N., Pyle L., Silveira L.J., Kelsey M.M., Garcia-Reyes Y., Robertson C.E., Ir D., Nadeau K.J., Cree-Green M. Obese Adolescents with PCOS Have Altered Biodiversity and Relative Abundance in Gastrointestinal Microbiota. J. Clin. Endocrinol. Metab. 2020;105:e2134–e2144. doi: 10.1210/clinem/dgz263.
    1. Soderborg T.K., Clark S.E., Mulligan C.E., Janssen R.C., Babcock L., Ir D., Young B., Krebs N., Lemas D.J., Johnson L.K., et al. The Gut Microbiota in Infants of Obese Mothers Increases Inflammation and Susceptibility to NAFLD. Nat. Commun. 2018;9:4462. doi: 10.1038/s41467-018-06929-0.
    1. Bolyen E., Rideout J.R., Dillon M.R., Bokulich N.A., Abnet C.C., Al-Ghalith G.A., Alexander H., Alm E.J., Arumugam M., Asnicar F., et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9.
    1. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2013;41:D590–D596. doi: 10.1093/nar/gks1219.
    1. Janssen S., McDonald D., Gonzalez A., Navas-Molina J.A., Jiang L., Xu Z.Z., Winker K., Kado D.M., Orwoll E., Manary M., et al. Phylogenetic Placement of Exact Amplicon Sequences Improves Associations with Clinical Information. mSystems. 2018;3:e00021-18. doi: 10.1128/mSystems.00021-18.
    1. Lozupone C., Lladser M.E., Knights D., Stombaugh J., Knight R. UniFrac: An Effective Distance Metric for Microbial Community Comparison. ISME J. 2011;5:169. doi: 10.1038/ismej.2010.133.
    1. Hu Y.-J., Satten G.A. Testing Hypotheses about the Microbiome Using the Linear Decomposition Model (LDM) Bioinformatics. 2020;36:4106–4115. doi: 10.1093/bioinformatics/btaa260.
    1. Mandal S., Van Treuren W., White R.A., Eggesbø M., Knight R., Peddada S.D. Analysis of Composition of Microbiomes: A Novel Method for Studying Microbial Composition. Microb. Ecol. Health Dis. 2015;26:27663. doi: 10.3402/mehd.v26.27663.
    1. Benjamini Y., Hochberg Y.J.R. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x.
    1. Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., et al. Vegan: Community Ecology Package. 2018. [(accessed on 16 September 2021)]. Available online: .
    1. Zhao N., Chen J., Carroll I.M., Ringel-Kulka T., Epstein M.P., Zhou H., Zhou J.J., Ringel Y., Li H., Wu M.C. Testing in Microbiome-Profiling Studies with MiRKAT, the Microbiome Regression-Based Kernel Association Test. Am. J. Hum. Genet. 2015;96:797–807. doi: 10.1016/j.ajhg.2015.04.003.
    1. Plantinga A.M., Chen J., Jenq R.R., Wu M.C. Pldist: Ecological Dissimilarities for Paired and Longitudinal Microbiome Association Analysis. Bioinformatics. 2019;35:3567–3575. doi: 10.1093/bioinformatics/btz120.
    1. Genuer R., Poggi J.-M., Tuleau-Malot C. VSURF: An R Package for Variable Selection Using Random Forests. R J. 2015;7:19–33. doi: 10.32614/RJ-2015-018.
    1. Williams C.K., Engelhardt A., Cooper T., Mayer Z., Ziem A., Scrucca L., Tang Y., Candan C., Kuhn M.M. Package ‘Caret’. 2016. [(accessed on 16 September 2021)]. Available online: .
    1. Grundy M.S., Cleeman I.J., Daniels R.S., Donato A.K., Eckel H.R., Franklin A.B., Gordon J.D., Krauss M.R., Savage J.P., Smith C.S., et al. Diagnosis and Management of the Metabolic Syndrome. Circulation. 2005;112:2735–2752. doi: 10.1161/CIRCULATIONAHA.105.169404.
    1. Human Microbiome Project Consortium Structure, Function and Diversity of the Healthy Human Microbiome. Nature. 2012;486:207–214. doi: 10.1038/nature11234.
    1. Lozupone C.A., Hamady M., Kelley S.T., Knight R. Quantitative and Qualitative β Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. Appl. Environ. Microbiol. 2007;73:1576–1585. doi: 10.1128/AEM.01996-06.
    1. Nadal I., Santacruz A., Marcos A., Warnberg J., Garagorri M., Moreno L.A., Martin-Matillas M., Campoy C., Martí A., Moleres A., et al. Shifts in Clostridia, Bacteroides and Immunoglobulin-Coating Fecal Bacteria Associated with Weight Loss in Obese Adolescents. Int. J. Obes. 2008;33:758–767. doi: 10.1038/ijo.2008.260.
    1. Santacruz A., Marcos A., Wärnberg J., Martí A., Martin-Matillas M., Campoy C., Moreno L.A., Veiga O., Redondo-Figuero C., Garagorri J.M., et al. Interplay Between Weight Loss and Gut Microbiota Composition in Overweight Adolescents. Obesity. 2009;17:1906–1915. doi: 10.1038/oby.2009.112.
    1. Simões C.D., Maukonen J., Scott K.P., Virtanen K.A., Pietiläinen K.H., Saarela M. Impact of a Very Low-Energy Diet on the Fecal Microbiota of Obese Individuals. Eur. J. Nutr. 2014;53:1421–1429. doi: 10.1007/s00394-013-0645-0.
    1. Louis S., Tappu R.-M., Damms-Machado A., Huson D.H., Bischoff S.C. Characterization of the Gut Microbial Community of Obese Patients Following a Weight-Loss Intervention Using Whole Metagenome Shotgun Sequencing. PLoS ONE. 2016;11:e0149564. doi: 10.1371/journal.pone.0149564.
    1. Frost F., Storck L.J., Kacprowski T., Gärtner S., Rühlemann M., Bang C., Franke A., Völker U., Aghdassi A.A., Steveling A., et al. A Structured Weight Loss Program Increases Gut Microbiota Phylogenetic Diversity and Reduces Levels of Collinsella in Obese Type 2 Diabetics: A Pilot Study. PLoS ONE. 2019;14:e0219489. doi: 10.1371/journal.pone.0219489.
    1. Walker A.W., Ince J., Duncan S.H., Webster L.M., Holtrop G., Ze X., Brown D., Stares M.D., Scott P., Bergerat A., et al. Dominant and Diet-Responsive Groups of Bacteria within the Human Colonic Microbiota. ISME J. 2011;5:220–230. doi: 10.1038/ismej.2010.118.
    1. Kootte R.S., Levin E., Salojärvi J., Smits L.P., Hartstra A.V., Udayappan S.D., Hermes G., Bouter K.E., Koopen A.M., Holst J.J., et al. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab. 2017;26:611–619.e6. doi: 10.1016/j.cmet.2017.09.008.
    1. Nirmalkar K., Murugesan S., Pizano-Zárate M.L., Villalobos-Flores L.E., García-González C., Morales-Hernández R.M., Nuñez-Hernández J.A., Hernández-Quiroz F., Del Socorro Romero-Figueroa M., Hernández-Guerrero C., et al. Gut Microbiota and Endothelial Dysfunction Markers in Obese Mexican Children and Adolescents. Nutrients. 2018;10:2009. doi: 10.3390/nu10122009.
    1. Liu H., Zhang H., Wang X., Yu X., Hu C., Zhang X. The Family Coriobacteriaceae Is a Potential Contributor to the Beneficial Effects of Roux-En-Y Gastric Bypass on Type 2 Diabetes. Surg. Obes. Relat. Dis. 2018;14:584–593. doi: 10.1016/j.soard.2018.01.012.
    1. Corrêa T.A.F., Rogero M.M., Hassimotto N.M.A., Lajolo F.M. The Two-Way Polyphenols-Microbiota Interactions and Their Effects on Obesity and Related Metabolic Diseases. Front. Nutr. 2019;6:188. doi: 10.3389/fnut.2019.00188.
    1. Chávez-Carbajal A., Nirmalkar K., Pérez-Lizaur A., Hernández-Quiroz F., Ramírez-del-Alto S., García-Mena J., Hernández-Guerrero C. Gut Microbiota and Predicted Metabolic Pathways in a Sample of Mexican Women Affected by Obesity and Obesity Plus Metabolic Syndrome. Int. J. Mol. Sci. 2019;20:438. doi: 10.3390/ijms20020438.
    1. Kasai C., Sugimoto K., Moritani I., Tanaka J., Oya Y., Inoue H., Tameda M., Shiraki K., Ito M., Takei Y., et al. Comparison of the Gut Microbiota Composition between Obese and Non-Obese Individuals in a Japanese Population, as Analyzed by Terminal Restriction Fragment Length Polymorphism and next-Generation Sequencing. BMC Gastroenterol. 2015;15:100. doi: 10.1186/s12876-015-0330-2.
    1. Liu R., Hong J., Xu X., Feng Q., Zhang D., Gu Y., Shi J., Zhao S., Liu W., Wang X., et al. Gut Microbiome and Serum Metabolome Alterations in Obesity and after Weight-Loss Intervention. Nat. Med. 2017;23:859–868. doi: 10.1038/nm.4358.
    1. Damms-Machado A., Mitra S., Schollenberger A.E., Kramer K.M., Meile T., Königsrainer A., Huson D.H., Bischoff S.C. Effects of Surgical and Dietary Weight Loss Therapy for Obesity on Gut Microbiota Composition and Nutrient Absorption. BioMed Research International. 2015;2015:806248. doi: 10.1155/2015/806248.
    1. Naderpoor N., Mousa A., Gomez-Arango L.F., Barrett H.L., Dekker Nitert M., de Courten B. Faecal Microbiota Are Related to Insulin Sensitivity and Secretion in Overweight or Obese Adults. J. Clin. Med. 2019;8:452. doi: 10.3390/jcm8040452.
    1. Menni C., Zhu J., Le Roy C.I., Mompeo O., Young K., Rebholz C.M., Selvin E., North K.E., Mohney R.P., Bell J.T., et al. Serum Metabolites Reflecting Gut Microbiome Alpha Diversity Predict Type 2 Diabetes. Gut Microbes. 2020;11:1632–1642. doi: 10.1080/19490976.2020.1778261.
    1. Monga Kravetz A., Testerman T., Galuppo B., Graf J., Pierpont B., Siebel S., Feinn R., Santoro N. Effect of Gut Microbiota and PNPLA3 Rs738409 Variant on Nonalcoholic Fatty Liver Disease (NAFLD) in Obese Youth. J. Clin. Endocrinol. Metab. 2020;105:e3575–e3585. doi: 10.1210/clinem/dgaa382.
    1. Sze M.A., Schloss P.D. Looking for a Signal in the Noise: Revisiting Obesity and the Microbiome. mBio. 2016;7:e01018-16. doi: 10.1128/mBio.01018-16.
    1. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G., Almeida M., Arumugam M., Batto J.-M., Kennedy S., et al. Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature. 2013;500:541–546. doi: 10.1038/nature12506.
    1. Stanislawski M.A., Dabelea D., Lange L.A., Wagner B.D., Lozupone C.A. Gut Microbiota Phenotypes of Obesity. NPJ Biofilms Microbiomes. 2019;5:18. doi: 10.1038/s41522-019-0091-8.
    1. Yu E.W., Gao L., Stastka P., Cheney M.C., Mahabamunuge J., Soto M.T., Ford C.B., Bryant J.A., Henn M.R., Hohmann E.L. Fecal Microbiota Transplantation for the Improvement of Metabolism in Obesity: The FMT-TRIM Double-Blind Placebo-Controlled Pilot Trial. PLoS Med. 2020;17:e1003051. doi: 10.1371/journal.pmed.1003051.
    1. De Cabo R., Mattson M.P. Effects of Intermittent Fasting on Health, Aging, and Disease. N. Engl. J. Med. 2019;381:2541–2551. doi: 10.1056/NEJMra1905136.
    1. Francesco A.D., Germanio C.D., Bernier M., de Cabo R. A Time to Fast. Science. 2018;362:770–775. doi: 10.1126/science.aau2095.
    1. Catenacci V.A., Pan Z., Ostendorf D., Brannon S., Gozansky W.S., Mattson M.P., Martin B., MacLean P.S., Melanson E.L., Troy Donahoo W. A Randomized Pilot Study Comparing Zero-Calorie Alternate-Day Fasting to Daily Caloric Restriction in Adults with Obesity. Obesity. 2016;24:1874–1883. doi: 10.1002/oby.21581.
    1. Mattson M.P., Longo V.D., Harvie M. Impact of Intermittent Fasting on Health and Disease Processes. Ageing Res. Rev. 2017;39:46–58. doi: 10.1016/j.arr.2016.10.005.
    1. Razavi R., Parvaresh A., Abbasi B., Yaghoobloo K., Hassanzadeh A., Mohammadifard N., Clark C.C.T., Morteza Safavi S. The Alternate-Day Fasting Diet Is a More Effective Approach than a Calorie Restriction Diet on Weight Loss and Hs-CRP Levels. Int. J. Vitam. Nutr. Res. 2020:1–9. doi: 10.1024/0300-9831/a000623.
    1. Dao M.C., Everard A., Aron-Wisnewsky J., Sokolovska N., Prifti E., Verger E.O., Kayser B.D., Levenez F., Chilloux J., Hoyles L., et al. Akkermansia Muciniphila and Improved Metabolic Health during a Dietary Intervention in Obesity: Relationship with Gut Microbiome Richness and Ecology. Gut. 2016;65:426–436. doi: 10.1136/gutjnl-2014-308778.
    1. Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B., Guiot Y., Derrien M., Muccioli G.G., Delzenne N.M., et al. Cross-Talk between Akkermansia Muciniphila and Intestinal Epithelium Controls Diet-Induced Obesity. Proc. Natl. Acad. Sci. USA. 2013;110:9066–9071. doi: 10.1073/pnas.1219451110.
    1. Shin N.-R., Lee J.-C., Lee H.-Y., Kim M.-S., Whon T.W., Lee M.-S., Bae J.-W. An Increase in the Akkermansia Spp. Population Induced by Metformin Treatment Improves Glucose Homeostasis in Diet-Induced Obese Mice. Gut. 2014;63:727–735. doi: 10.1136/gutjnl-2012-303839.
    1. Peres Valgas da Silva C., Hernández-Saavedra D., White J.D., Stanford K.I. Cold and Exercise: Therapeutic Tools to Activate Brown Adipose Tissue and Combat Obesity. Biology. 2019;8:9. doi: 10.3390/biology8010009.
    1. Gao X., Xie Q., Kong P., Liu L., Sun S., Xiong B., Huang B., Yan L., Sheng J., Xiang H. Polyphenol- and Caffeine-Rich Postfermented Pu-Erh Tea Improves Diet-Induced Metabolic Syndrome by Remodeling Intestinal Homeostasis in Mice. Infect. Immun. 2017;86:e00601-17. doi: 10.1128/IAI.00601-17.
    1. Burcelin R. Gut Microbiota and Immune Crosstalk in Metabolic Disease. Mol. Metab. 2016;5:771–781. doi: 10.1016/j.molmet.2016.05.016.
    1. Frank D.N., Zhu W., Sartor R.B., Li E. Investigating the Biological and Clinical Significance of Human Dysbioses. Trends Microbiol. 2011;19:427–434. doi: 10.1016/j.tim.2011.06.005.
    1. Sonnenburg J.L., Bäckhed F. Diet–Microbiota Interactions as Moderators of Human Metabolism. Nature. 2016;535:56–64. doi: 10.1038/nature18846.
    1. Fabbiano S., Suárez-Zamorano N., Chevalier C., Lazarević V., Kieser S., Rigo D., Leo S., Veyrat-Durebex C., Gaïa N., Maresca M., et al. Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements. Cell Metab. 2018;28:907–921.e7. doi: 10.1016/j.cmet.2018.08.005.
    1. Shahar R.T., Koren O., Matarasso S., Shochat T., Magzal F., Agmon M. Attributes of Physical Activity and Gut Microbiome in Adults: A Systematic Review. Int. J. Sports Med. 2020;41:801–814. doi: 10.1055/a-1157-9257.
    1. Mahmud R., Shehreen S., Shahriar S., Rahman M.S., Akhteruzzaman S., Sajib A.A. Non-Caloric Artificial Sweeteners Modulate the Expression of Key Metabolic Genes in the Omnipresent Gut Microbe Escherichia Coli. J. Mol. Microbiol. Biotechnol. 2019:1–14. doi: 10.1159/000504511.
    1. Voigt R.M., Forsyth C.B., Green S.J., Engen P.A., Keshavarzian A. Circadian Rhythm and the Gut Microbiome. In: Cryan J.F., Clarke G., editors. International Review of Neurobiology. Volume 131. Gut Microbiome and Behavior; Academic Press; Cambridge, MA, USA: 2016. pp. 193–205.
    1. Dhurandhar N.V., Schoeller D., Brown A.W., Heymsfield S.B., Thomas D., Sørensen T.I.A., Speakman J.R., Jeansonne M., Allison D.B. Energy Balance Measurement: When Something Is Not Better than Nothing. Int. J. Obes. 2015;39:1109–1113. doi: 10.1038/ijo.2014.199.
    1. Zeevi D., Korem T., Zmora N., Israeli D., Rothschild D., Weinberger A., Ben-Yacov O., Lador D., Avnit-Sagi T., Lotan-Pompan M., et al. Personalized Nutrition by Prediction of Glycemic Responses. Cell. 2015;163:1079–1094. doi: 10.1016/j.cell.2015.11.001.
    1. Joyce S.A., Gahan C.G.M. Bile Acid Modifications at the Microbe-Host Interface: Potential for Nutraceutical and Pharmaceutical Interventions in Host Health. Annu. Rev. Food Sci. Technol. 2016;7:313–333. doi: 10.1146/annurev-food-041715-033159.

Source: PubMed

3
Iratkozz fel