(1,3)-β-D-glucan-based diagnosis of invasive Candida infection versus culture-based diagnosis in patients with sepsis and with an increased risk of invasive Candida infection (CandiSep): study protocol for a randomized controlled trial

Frank Bloos, Jürgen Held, Peter Schlattmann, Nicole Brillinger, Oliver Kurzai, Oliver A Cornely, Daniel Thomas-Rüddel, Frank Bloos, Jürgen Held, Peter Schlattmann, Nicole Brillinger, Oliver Kurzai, Oliver A Cornely, Daniel Thomas-Rüddel

Abstract

Background: The time to diagnosis of invasive Candida infection (ICI) is often too long to initiate timely antifungal therapy in patients with sepsis. Elevated serum (1,3)-β-D-glucan (BDG) concentrations have a high diagnostic sensitivity for detecting ICI. However, the clinical significance of elevated BDG concentrations is unclear in critically ill patients. The goal of this study is to investigate whether measurement of BDG in patients with sepsis and a high risk for ICI can be used to decrease the time to empiric antifungal therapy and thus, increase survival.

Methods/design: This prospective multicenter open randomized controlled trial is being conducted in 19 German intensive care units. All adult patients with severe sepsis or septic shock and an increased risk for ICI are eligible for enrolment. Risk factors are total parenteral nutrition, previous abdominal surgery, previous antimicrobial therapy, and renal replacement therapy. Patients with proven ICI or those already treated with systemic antifungal substances are excluded. Patients are allocated to a BDG or standard care group. The standard care group receives targeted antifungal therapy as necessary. In the BDG group, BDG serum samples are taken after randomization and 24 h later. Antifungal therapy is initiated if BDG is ≥80 pg/ml in at least one sample. We plan to enroll 312 patients. The primary outcome is 28-day mortality. Other outcomes include antifungal-free survival within 28 days after enrolment, time to antifungal therapy, and the diagnostic performance of BDG compared to other laboratory tests for early ICI diagnosis. The statistical analysis will be performed according to the intent-to-treat principle.

Discussion: Because of the high risk of death, American guidelines recommend empiric antifungal therapy in sepsis patients with a high risk of ICI despite the limited evidence for such a recommendation. In contrast, empiric antifungal therapy is not recommended by European guidelines. BDG may offer a way out of this dilemma since BDG potentially identifies patients in need of early antifungals. However, the evidence for such an approach is inconclusive. This clinical study will generate solid evidence for health-care providers and authors of guidelines for the use of BDG in critically ill patients.

Trial registration: Clinicaltrials.gov, NCT02734550 . Registered 12 April 2016.

Keywords: (1,3)-β-D-glucan; Biomarker; Early antifungal therapy; Invasive Candida infection; Sepsis; Septic shock.

Conflict of interest statement

Consent for publication

Not applicable.

Competing interests

We have read and understood the TRIALS policy on declarations of interests and declare the following interests. FB, DTR, and OK belong to the institution receiving public funding for the trial. FB has received lecture honoraria from Biosyn, Gilead, and CSL Behring. JH received royalties for lectures from MSD as well as lecture royalties and a research grant from Pfizer. OAC is an unpaid member of the European Confederation of Medical Mycology and of the European Fungal Infection Study Group of the European Society for Clinical Microbiology and Infectious Diseases, which are developing joint guidelines. OAC has received research grants from Actelion, Amplyx, Arsanis, Astellas, AstraZeneca, Basilea, Bayer, Cidara, Duke University (NIH UM1AI104681), F2G, Gilead, GSK, Leeds University, Matinas, Medicines Company, MedPace, Melinta, Merck/MSD, Miltenyi, Pfizer, Rempex, Roche, Sanofi Pasteur, Scynexis, and Seres. OAC is a consultant to Amplyx, Actelion, Astellas, Basilea, Cidara, Da Volterra, F2G, Gilead, Janssen, Matinas, Menarini, Merck/MSD, Paratek, PSI, Scynexis, Seres, Summit, Tetraphase, and Vical. OAC has received lecture honoraria from Astellas, Basilea, Gilead, Merck/MSD, and Pfizer. NB and PS report no conflicts of interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study flow chart. Microbiological samples were taken from multiple anatomic sites to assess Candida colonization. BDG (1,3)-β-D-glucan, ICI invasive Candida infection
Fig. 2
Fig. 2
Study procedures and assessments. ICU intensive care unit, SOFA sequential organ failure assessment; 1 maximum of 1 h after randomization; 2 22–26 h after randomization; 3 ≤6 h before and maximum of 3 h after randomization; 4 Sepsis criteria, routine biochemistry, microbiological results, medication, anti-infectious measures, and SOFA score; 5 As soon as all baseline microbiological results are available

References

    1. Bitar D, Lortholary O, Le Strat Y, Nicolau J, Coignard B, Tattevin P, et al. Population-based analysis of invasive fungal infections, France, 2001-2010. Emerg Infect Dis. 2014;20:1149–1155. doi: 10.3201/eid2007.140087.
    1. Zilberberg MD, Shorr AF, Kollef MH. Secular trends in candidemia-related hospitalization in the United States, 2000-2005. Infect Control Hosp Epidemiol. 2008;29:978–980. doi: 10.1086/591033.
    1. Vincent J-L, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34:344–353. doi: 10.1097/01.CCM.0000194725.48928.3A.
    1. Zaoutis TE, Argon J, Chu J, Berlin JA, Walsh TJ, Feudtner C. The epidemiology and attributable outcomes of candidemia in adults and children hospitalized in the United States: a propensity analysis. Clin Infect Dis. 2005;41:1232–1239. doi: 10.1086/496922.
    1. Clancy CJ, Nguyen MH. Finding the “missing 50%” of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis. 2013;56:1284–1292. doi: 10.1093/cid/cit006.
    1. Garey KW, Rege M, Pai MP, Mingo DE, Suda KJ, Turpin RS, et al. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis. 2006;43:25–31. doi: 10.1086/504810.
    1. Kollef M, Micek S, Hampton N, Doherty JA, Kumar A. Septic shock attributed to Candida infection: importance of empiric therapy and source control. Clin Infect Dis. 2012;54:1739–1746. doi: 10.1093/cid/cis305.
    1. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky Zeichner L, et al. Clinical practice guideline for the Management of Candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62:e1–50. doi: 10.1093/cid/civ1194.
    1. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis campaign: international guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017;43:304–377. doi: 10.1007/s00134-017-4683-6.
    1. Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect. 2012;18(Suppl 7):19–37. doi: 10.1111/1469-0691.12039.
    1. Wright WF, Overman SB, Ribes JA. (1–3)- -D-Glucan Assay: A Review of its Laboratory and Clinical Application. Lab Med Am Soc Clin Pathol. 2011;42:679–685.
    1. Ostrosky Zeichner L, Alexander BD, Kett DH, Vazquez J, Pappas PG, Saeki F, et al. Multicenter clinical evaluation of the (1->3) beta-D-glucan assay as an aid to diagnosis of fungal infections in humans. Clin Infect Dis. 2005;41:654–659. doi: 10.1086/432470.
    1. Karageorgopoulos DE, Vouloumanou EK, Ntziora F, Michalopoulos A, Rafailidis PI, Falagas ME. β-D-glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin Infect Dis. 2011;52:750–770. doi: 10.1093/cid/ciq206.
    1. Cascio Lo G, Koncan R, Stringari G, Russo A, Azzini A, Ugolini A, et al. Interference of confounding factors on the use of (1,3)-beta-D-glucan in the diagnosis of invasive candidiasis in the intensive care unit. Eur J Clin Microbiol Infect Dis. 2015;34:357–365. doi: 10.1007/s10096-014-2239-z.
    1. Liss B, Cornely OA, Hoffmann D, Dimitriou V, Wisplinghoff H. 1,3-ß-D-glucan concentrations in blood products predict false positive post-transfusion results. Mycoses. 2016;59:39–42. doi: 10.1111/myc.12432.
    1. Scudeller L, Bassetti M, Concia E, Corrao S, Cristini F, De Rosa FG, et al. MEDical wards invasive candidiasis ALgorithms (MEDICAL): consensus proposal for management. Eur J Intern Med. 2016;34:45–53. doi: 10.1016/j.ejim.2016.07.007.
    1. Knitsch W, Vincent J-L, Utzolino S, François B, Dinya T, Dimopoulos G, et al. A randomized, placebo-controlled trial of preemptive antifungal therapy for the prevention of invasive candidiasis following gastrointestinal surgery for intra-abdominal infections. Clin Infect Dis. 2015;61:1671–1678.
    1. Ostrosky Zeichner L, Shoham S, Vazquez J, Reboli A, Betts R, Barron MA, et al. MSG-01: a randomized, double-blind, placebo-controlled trial of caspofungin prophylaxis followed by preemptive therapy for invasive candidiasis in high-risk adults in the critical care setting. Clin Infect Dis. 2014;58:1219–1226. doi: 10.1093/cid/ciu074.
    1. Moreno R, Vincent JL, Matos R, Mendonça A, Cantraine F, Thijs L, et al. The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Working group on Sepsis related problems of the ESICM. Intensive Care Med. 1999;25:686–696. doi: 10.1007/s001340050931.
    1. Bloos F, Trips E, Nierhaus A, Briegel J, Heyland DK, Jaschinski U, et al. Effect of sodium selenite administration and Procalcitonin-guided therapy on mortality in patients with severe Sepsis or septic shock: a randomized clinical trial. JAMA Intern Med. 2016;176:1266–1276. doi: 10.1001/jamainternmed.2016.2514.
    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for Sepsis and septic shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287.
    1. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of cancer/invasive fungal infections cooperative group and the National Institute of Allergy and Infectious Diseases mycoses study group (EORTC/MSG) consensus group. Clin Infect Dis. 2008;46:1813–1821. doi: 10.1086/588660.
    1. Pittet D, Monod M, Suter PM, Frenk E, Auckenthaler R. Candida colonization and subsequent infections in critically ill surgical patients. Ann Surg. 1994;220:751–758. doi: 10.1097/00000658-199412000-00008.
    1. Springer J, Loeffler J, Heinz W, Schlossnagel H, Lehmann M, Morton O, et al. Pathogen-specific DNA enrichment does not increase sensitivity of PCR for diagnosis of invasive aspergillosis in neutropenic patients. J Clin Microbiol. 2011;49:1267–1273. doi: 10.1128/JCM.01679-10.
    1. Toju H, Tanabe AS, Yamamoto S, Sato H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE. 2012;7:e40863. doi: 10.1371/journal.pone.0040863.
    1. White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols: A Guide to Methods and Applications. New York: Academic Press; 1990. p. 315-22.
    1. Schabereiter-Gurtner C, Selitsch B, Rotter ML, Hirschl AM, Willinger B. Development of novel real-time PCR assays for detection and differentiation of eleven medically important aspergillus and Candida species in clinical specimens. J Clin Microbiol. 2007;45:906–914. doi: 10.1128/JCM.01344-06.
    1. León C, Ruiz-Santana S, Saavedra P, Galván B, Blanco A, Castro C, et al. Usefulness of the “Candida score” for discriminating between Candida colonization and invasive candidiasis in non-neutropenic critically ill patients: a prospective multicenter study. Crit Care Med. 2009;37:1624–1633. doi: 10.1097/CCM.0b013e31819daa14.
    1. Schuster MG, Edwards JE, Sobel JD, Darouiche RO, Karchmer AW, Hadley S, et al. Empirical fluconazole versus placebo for intensive care unit patients: a randomized trial. Ann Intern Med. 2008;149:83–90. doi: 10.7326/0003-4819-149-2-200807150-00004.
    1. Bloos F, Bayer O, Sachse S, Straube E, Reinhart K, Kortgen A. Attributable costs of patients with candidemia and potential implications of polymerase chain reaction-based pathogen detection on antifungal therapy in patients with sepsis. J Crit Care. 2013;28:2–8. doi: 10.1016/j.jcrc.2012.07.011.
    1. Brunkhorst FM, Oppert M, Marx G, Bloos F, Ludewig K, Putensen C, et al. Effect of empirical treatment with moxifloxacin and meropenem vs meropenem on sepsis-related organ dysfunction in patients with severe sepsis: a randomized trial. JAMA. 2012;307:2390–2399. doi: 10.1001/jama.2012.5833.
    1. Azoulay E, Dupont H, Tabah A, Lortholary O, Stahl J-P, Francais A, et al. Systemic antifungal therapy in critically ill patients without invasive fungal infection*. Crit Care Med. 2012;40:813–822. doi: 10.1097/CCM.0b013e318236f297.
    1. Nguyen MH, Wissel MC, Shields RK, Salomoni MA, Hao B, Press EG, et al. Performance of Candida real-time polymerase chain reaction, β-D-glucan assay, and blood cultures in the diagnosis of invasive candidiasis. Clin Infect Dis. 2012;54:1240–1248. doi: 10.1093/cid/cis200.
    1. Posteraro B, De Pascale G, Tumbarello M, Torelli R, Pennisi MA, Bello G, et al. Early diagnosis of candidemia in intensive care unit patients with sepsis: a prospective comparison of (1→3)-β-D-glucan assay, Candida score, and colonization index. Crit Care. 2011;15:R249. doi: 10.1186/cc10507.
    1. Delaloye J, Calandra T. Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence. 2014;5:1–9. doi: 10.4161/viru.26187.
    1. Bloos F, Schlattmann P, Pletz M, Kurzai O, Thomas-Rüddel D. Meta-analysis of risk factors for developing invasive Candida infection in adult critically ill patients. Mycoses. 2015;58(Suppl. 3):8.
    1. Muskett H, Shahin J, Eyres G, Harvey S, Rowan K, Harrison D. Risk factors for invasive fungal disease in critically ill adult patients: a systematic review. Crit Care. 2011;15:R287. doi: 10.1186/cc10574.
    1. Bone RC, Sibbald WJ, Sprung CL. The ACCP-SCCM consensus conference on sepsis and organ failure. Chest. 1992;101:1481–1483. doi: 10.1378/chest.101.6.1481.
    1. Pittet D, Rangel-Frausto S, Li N, Tarara D, Costigan M, Rempe L, et al. Systemic inflammatory response syndrome, sepsis, severe sepsis and septic shock: incidence, morbidities and outcomes in surgical ICU patients. Intensive Care Med. 1995;21:302–309. doi: 10.1007/BF01705408.
    1. Brooks D, Smith A, Young D, Fulton R, Booth MG. Mortality in intensive care: the impact of bacteremia and the utility of systemic inflammatory response syndrome. Am J Infect Control. 2016;
    1. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of clinical criteria for Sepsis: for the third international consensus definitions for Sepsis and septic shock (Sepsis-3) JAMA. 2016;315:762–774. doi: 10.1001/jama.2016.0288.
    1. Timsit JF, Azoulay E, Cornet M, Gangneux J-P, Jullien V, Vesin A, et al. EMPIRICUS micafungin versus placebo during nosocomial sepsis in Candida multi-colonized ICU patients with multiple organ failures: study protocol for a randomized controlled trial. Trials. 2013;14:399. doi: 10.1186/1745-6215-14-399.
    1. Posteraro B, Tumbarello M, De Pascale G, Liberto E, Vallecoccia MS, De Carolis E, et al. (1,3)-β-d-Glucan-based antifungal treatment in critically ill adults at high risk of candidaemia: an observational study. J Antimicrob Chemother. 2016;71:2262–9.

Source: PubMed

3
Iratkozz fel