Cardioprotective potential of N-acetyl cysteine against hyperglycaemia-induced oxidative damage: a protocol for a systematic review

Phiwayinkosi V Dludla, Bongani B Nkambule, Stephanie C Dias, Rabia Johnson, Phiwayinkosi V Dludla, Bongani B Nkambule, Stephanie C Dias, Rabia Johnson

Abstract

Background: Hyperglycaemia-induced oxidative damage is a well-established factor implicated in the development of diabetic cardiomyopathy (DCM) in diabetic individuals. Some of the well-known characteristics of DCM include increased myocardial left ventricular wall thickness and remodelling that result in reduced cardiac efficiency. To prevent this, an increasing number of pharmacological compounds such as N-acetyl cysteine (NAC) are explored for their antioxidant properties. A few studies have shown that NAC can ameliorate hyperglycaemia-induced oxidative damage within the heart. Hence, the objective of this review is to synthesise the available evidence pertaining to the cardioprotective role of NAC against hyperglycaemia-induced oxidative damage and thus prevent DCM.

Methods: This systematic review protocol will be reported in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 statement. We will perform a comprehensive search on major databases such as EMBASE, Cochrane Library, PubMed and Google scholar for original research articles published from January 1960 to March 2017. We will only report on literature that is available in English. Two authors will independently screen for eligible studies using pre-defined criteria, and data extraction will be done in duplicate. All discrepancies will be resolved by consensus or consultation of a third reviewer. The quality of studies will be checked using Cochrane Risk of Bias Assessment Tool and The Joanna Briggs Institute (JBI) Critical Appraisal tools for non-randomised experimental studies. Heterogeneity across studies will be assessed using the Cochrane Q statistic and the inconsistency index (I 2). We will use the random effects model to calculate a pooled estimate.

Discussion: Although several studies have shown that NAC can ameliorate hyperglycaemia-induced oxidative damage within the heart, this systematic review will be the first pre-registered synthesis of data to identify the cardioprotective potential of NAC against hyperglycaemia-induced oxidative damage. This result will help guide future research evaluating the cardioprotective role of NAC against DCM and better identify possible mechanisms of action for NAC to prevent oxidative damage with a diabetic heart.

Systemic review registration: PROSPERO CRD42017055851 .

Keywords: Cardiac protection; Cardiomyopathy; Diabetes mellitus; N-acetyl cysteine; N-acetylcysteine; Oxidative stress.

References

    1. WHO. World Health Statistics 2012. [Available from: . Accessed 13 Jan 2017.
    1. WHO. Noncommunicable diseases country profiles 2014. [Available from: . Accessed 13 Jan 2017.
    1. Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34. doi: 10.1056/NEJM199807233390404.
    1. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595–602. doi: 10.1016/0002-9149(72)90595-4.
    1. Tarquini R, Lazzeri C, Pala L, Rotella CM, Gensini GF. The diabetic cardiomyopathy. Acta Diabetol. 2011;48(3):173–81. doi: 10.1007/s00592-010-0180-x.
    1. Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord. 2010;11(1):31–9. doi: 10.1007/s11154-010-9131-7.
    1. Pappachan JM, Varughese GI, Sriraman R, Arunagirinathan G. Diabetic cardiomyopathy: pathophysiology, diagnostic evaluation and management. World J Diabetes. 2013;4(5):177–89.
    1. Jonassen AK, Sack MN, Mjøs OD, Yellon DM. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res. 2001;89(12):1191–8. doi: 10.1161/hh2401.101385.
    1. Eurich DT, Majumdar SR, McAlister FA, Tsuyuki RT, Johnson JA. Improved clinical outcomes associated with metformin in patients with diabetes and heart failure. Diabetes Care. 2005;28(10):2345–51. doi: 10.2337/diacare.28.10.2345.
    1. Yin M, van der Horst ICC, van Melle JP, Qian C, van Gilst WH, Silljé HHW, et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol. 2011;301(2):H459–68. doi: 10.1152/ajpheart.00054.2011.
    1. Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach. Update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;38(8):140–9. doi: 10.2337/dc14-2441.
    1. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70. doi: 10.1161/CIRCRESAHA.110.223545.
    1. Chaumais MC, Ranchoux B, Montani D, Dorfmüller P, Tu L, Lecerf F, et al. N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats. Respir Res. 2014;15:65. doi: 10.1186/1465-9921-15-65.
    1. Farshid AA, Tamaddonfard E, Simaee N, Mansouri S, Najafi S, Asri-Rezaee S, et al. Effects of histidine and N-acetylcysteine on doxorubicin-induced cardiomyopathy in rats. Cardiovasc Toxicol. 2014;14(2):153–61. doi: 10.1007/s12012-013-9239-6.
    1. Fischell TA. Contrast loaded with N-acetylcysteine for coronary imaging during percutaneous coronary intervention: a new concept for renal and myocardial protection during percutaneous coronary intervention. JACC Cardiovasc Interv. 2009;2(3):222–3. doi: 10.1016/j.jcin.2008.12.007.
    1. Meyer M, LeWinter MM, Bell SP, Chen Z, Selby DE, Singla DK, et al. N-acetylcysteine enhanced contrast provides cardiorenal protection. JACC Cardiovasc Interv. 2009;2(3):215–21. doi: 10.1016/j.jcin.2008.11.011.
    1. Wu XY, Luo AY, Zhou YR, Ren JH. N-acetylcysteine reduces oxidative stress, nuclear factor-κB activity and cardiomyocyte apoptosis in heart failure. Mol Med Rep. 2014;10(2):615–24.
    1. Dludla PV, Muller CJ, Louw J, Joubert E, Salie R, Opoku AR, et al. The cardioprotective effect of an aqueous extract of fermented rooibos (Aspalathus linearis) on cultured cardiomyocytes derived from diabetic rats. Phytomedicine. 2014;21(5):595–601. doi: 10.1016/j.phymed.2013.10.029.
    1. Haleagrahara N, Julian V, Chakravarthi S. N-acetylcysteine offers cardioprotection by decreasing cardiac lipid hydroperoxides and 8-isoprostane level in isoproterenol-induced cardiotoxicity in rats. Cardiovasc Toxicol. 2011;11(4):373–81. doi: 10.1007/s12012-011-9132-0.
    1. Burgunder JM, Varriale A, Lauterburg BH. Effect of N-acetylcysteine on plasma cysteine and glutathione following paracetamol administration. Eur J Clin Pharmacol. 1989;36(2):127–31. doi: 10.1007/BF00609183.
    1. Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr. 2005;2(2):38–44. doi: 10.1186/1550-2783-2-2-38.
    1. Giam B, Chu PY, Kuruppu S, Smith AI, Horlock D, Kiriazis H, et al. N-acetylcysteine attenuates the development of cardiac fibrosis and remodeling in a mouse model of heart failure. Physiol Rep. 2016;4(7):e12757. doi: 10.14814/phy2.12757.
    1. Rajapakse N, Giam B, Chu PY, Kiriazis H, Du XN, Kaye DM. N-acetylcysteine reverses established cardiac and renal fibrosis in a mouse model of heart failure. FASEB J. 2016;30(1):Suppl. 735.
    1. Liu C, Lu XZ, Shen MZ, Xing CY, Ma J, Duan YY, Yuan LJ. N-acetyl cysteine improves the diabetic cardiac function: possible role of fibrosis inhibition. BMC Cardiovasc Disord. 2015;15:84. doi: 10.1186/s12872-015-0076-3.
    1. Suddarth SB. Acetylcysteine, a new and effective mucolytic agent. Bull Geisinger. 1963;15:65–9.
    1. Babineau J. Product review: covidence (systematic review software) J Can Health Libr Assoc. 2014;35(2):68–71. doi: 10.5596/c14-016.
    1. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Foster J, Burry LD, Thabane L, Choong K, Menon K, Duffett M, Cheung A, Guenette M, Chimunda T, Rose L. Melatonin and melatonin agonists to prevent and treat delirium in critical illness: a systematic review protocol. Syst Rev. 2016;5(1):199. doi: 10.1186/s13643-016-0378-2.
    1. The Joanna Briggs Institute . Joanna Briggs Institute reviewers’ manual: 2016 edition. Australia: The Joanna Briggs Institute; 2016.
    1. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6. doi: 10.1136/.
    1. Higgins JPT, Green S (eds). Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated March 2011]. The Cochrane Collaboration; 2011. Available from: . Accessed 07 Mar 2017.
    1. Popay J, Roberts H, Sowden A, Petticrew M, Arai L, Rodgers M, et al. Guidance on the conduct of narrative synthesis in systematic reviews. A product from the ESRC methods programme Version. 2006;1:b92. .
    1. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58. doi: 10.1002/sim.1186.
    1. The Nordic Cochrane Centre, The Cochrane Collaboration . Review manager (RevMan). 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; 2014.
    1. Bai Y, Cui W, Xin Y, Miao X, Barati MT, Zhang C. Prevention by sulforaphane of diabetic cardiomyopathy is associated with up-regulation of Nrf2 expression and transcription activation. J Mol Cell Cardiol. 2013;57:82–95. doi: 10.1016/j.yjmcc.2013.01.008.
    1. Xu J, Li H, Irwin MG, Xia ZY, Mao X, Lei S, et al. Propofol ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction via heme oxygenase-1/signal transducer and activator of transcription 3 signaling pathway in rats. Crit Care Med. 2014;42(8):e583–94. doi: 10.1097/CCM.0000000000000415.
    1. Dludla PV, Muller CJF, Joubert E, Louw J, Essop MF, Gabuza KB, et al. Aspalathin protects the heart against hyperglycemia-induced oxidative damage by up-regulating Nrf2 expression. Molecules. 2017;22(1). doi:10.3390/molecules22010129.
    1. Dludla PV, Muller CJ, Joubert E, Louw J, Gabuza KB, Huisamen B, et al. Phenylpyruvic acid-2-O-β-D-glucoside attenuates high glucose-induced apoptosis in H9c2 cardiomyocytes. Planta Med. 2016;82(17):1468–74. doi: 10.1055/s-0042-110856.
    1. Johnson R, Dludla P, Joubert E, February F, Mazibuko S, Ghoor S, et al. Aspalathin, a dihydrochalcone C-glucoside, protects H9c2 cardiomyocytes against high glucose induced shifts in substrate preference and apoptosis. Mol Nutr Food Res. 2016;60(4):922–34. doi: 10.1002/mnfr.201500656.
    1. Johnson R, Dludla PV, Muller CJ, Huisamen B, Essop MF, Louw J. The transcription profile unveils the cardioprotective effect of aspalathin against lipid toxicity in an in vitro H9c2 model. Molecules. 2017;22(2). doi:10.3390/molecules22020219.

Source: PubMed

3
Iratkozz fel