The Impact of SARS-CoV-2 Infection on Fertility and Female and Male Reproductive Systems

Agnieszka Markiewicz-Gospodarek, Paulina Wdowiak, Marcin Czeczelewski, Alicja Forma, Jolanta Flieger, Jacek Januszewski, Elżbieta Radzikowska-Büchner, Jacek Baj, Agnieszka Markiewicz-Gospodarek, Paulina Wdowiak, Marcin Czeczelewski, Alicja Forma, Jolanta Flieger, Jacek Januszewski, Elżbieta Radzikowska-Büchner, Jacek Baj

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains a huge challenge for contemporary healthcare systems. Apart from widely reported acute respiratory distress syndrome (ARDS), the virus affects many other systems inducing a vast number of symptoms such as gastrointestinal, neurological, dermatological, cardiovascular, and many more. Currently it has also been hypothesized that the virus might affect female and male reproductive systems; SARS-CoV-2 infection could also have a role in potential disturbances to human fertility. In this article, we aimed to review the latest literature regarding the potential effects of SARS-CoV-2 infection on female and male reproductive systems as well as fertility, in general.

Keywords: COVID-19; SARS-CoV2; female fertility; male fertility; pandemic; reproductive complications.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The potential course of COVID-19 depending on the severity of disease symptoms.

References

    1. Ashour H.M., Elkhatib W.F., Rahman M., Elshabrawy H.A. Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks. Pathogens. 2020;9:186. doi: 10.3390/pathogens9030186.
    1. Zhang Y., Geng X., Tan Y., Li Q., Xu C., Xu J., Hao L., Zeng Z., Luo X., Liu F., et al. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomed. Pharmacother. 2020;127:110195. doi: 10.1016/j.biopha.2020.110195.
    1. Zhang X., Cai H., Hu J., Lian J., Gu J., Zhang S., Ye C., Lu Y., Jin C., Yu G., et al. Epidemiological, clinical characteristics of cases of SARS-CoV-2 infection with abnormal imaging findings. Int. J. Infect. Dis. 2020;94:81–87. doi: 10.1016/j.ijid.2020.03.040.
    1. Sharma I., Kumari P., Sharma A., Saha S.C. SARS-CoV-2 and the reproductive system: Known and the unknown. Middle East Fertil. Soc. J. 2021;26:1. doi: 10.1186/s43043-020-00046-z.
    1. Li H., Liu L., Zhang D., Xu J., Dai H., Tang N., Su X., Cao B. SARS-CoV-2 and viral sepsis: Observations and hypotheses. Lancet. 2020;395:1517–1520. doi: 10.1016/S0140-6736(20)30920-X.
    1. Wang W., Xu Y., Gao R., Lu R., Han K., Wu G., Tan W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. 2020;323:1843–1844. doi: 10.1001/jama.2020.3786.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.-H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271–280.e278. doi: 10.1016/j.cell.2020.02.052.
    1. Liu M., Wang T., Zhou Y., Zhao Y., Zhang Y., Li J. Potential role of ACE2 in coronavirus disease 2019 (COVID-19) prevention and management. J. Transl. Intern. Med. 2020;8:9–19. doi: 10.2478/jtim-2020-0003.
    1. Liu Y., Chen H., Tang K., Guo Y. Withdrawn: Clinical manifestations and outcome of SARS-CoV-2 infection during pregnancy. J. Infect. 2020 doi: 10.1016/j.jinf.2020.02.028.
    1. Cattrini C., Bersanelli M., Latocca M., Conte B., Vallome G., Boccardo F. Sex Hormones and Hormone Therapy during COVID-19 Pandemic: Implications for Patients with Cancer. Cancers. 2020;12:2325. doi: 10.3390/cancers12082325.
    1. Breslin N., Baptiste C., Gyamfi-Bannerman C., Miller R., Martinez R., Bernstein K., Ring L., Landau R., Purisch S., Friedman A.M., et al. Coronavirus disease 2019 infection among asymptomatic and symptomatic pregnant women: Two weeks of confirmed presentations to an affiliated pair of New York City hospitals. Am. J. Obstet. Gynecol. MFM. 2020;2:100118. doi: 10.1016/j.ajogmf.2020.100118.
    1. Syeda S., Baptiste C., Breslin N., Gyamfi-Bannerman C., Miller R. The clinical course of COVID in pregnancy. Semin. Perinatol. 2020;44:151284. doi: 10.1016/j.semperi.2020.151284.
    1. Stanley K.E., Thomas E., Leaver M., Wells D. Coronavirus disease-19 and fertility: Viral host entry protein expression in male and female reproductive tissues. Fertil. Steril. 2020;114:33–43. doi: 10.1016/j.fertnstert.2020.05.001.
    1. Wang X., Dhindsa R., Povysil G., Zoghbi A., Motelow J., Hostyk J., Goldstein D. Transcriptional Inhibition of Host Viral Entry Proteins as a Therapeutic Strategy for SARS-CoV-19. Preprints. 2020:2020030360. doi: 10.20944/preprints202003.0360.v1.
    1. Schwartz A., Yogev Y., Zilberman A., Alpern S., Many A., Yousovich R., Gamzu R. Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vaginal swabs of women with acute SARS-CoV-2 infection: A prospective study. BJOG Int. J. Obstet. Gynaecol. 2021;128:97–100. doi: 10.1111/1471-0528.16556.
    1. Vivanti A.J., Vauloup-Fellous C., Prevot S., Zupan V., Suffee C., Do Cao J., Benachi A., De Luca D. Transplacental transmission of SARS-CoV-2 infection. Nat. Commun. 2020;11:3572. doi: 10.1038/s41467-020-17436-6.
    1. Pan P.-P., Zhan Q.-T., Le F., Zheng Y.-M., Jin F. Angiotensin-Converting Enzymes Play a Dominant Role in Fertility. Int. J. Mol. Sci. 2013;14:21071–21086. doi: 10.3390/ijms141021071.
    1. Ferreira R., Gasperin B., Santos J., Rovani M., Santos R.A., Gutierrez K., Oliveira J.F., Reis A.M., Gonçalves P.B. Angiotensin II profile and mRNA encoding RAS proteins during bovine follicular wave. J. Renin-Angiotensin-Aldosterone Syst. 2011;12:475–482. doi: 10.1177/1470320311403786.
    1. Fan X., Bialecka M., Moustakas I., Lam E., Torrens-Juaneda V., Borggreven N.V., Trouw L., Louwe L.A., Pilgram G.S.K., Mei H., et al. Single-cell reconstruction of follicular remodeling in the human adult ovary. Nat. Commun. 2019;10:3163. doi: 10.1038/s41467-019-11036-9.
    1. Lee W., Mok A., Chung J.P. Potential effects of COVID-19 on reproductive systems and fertility; assisted reproductive technology guidelines and considerations: A review. Hong Kong Med. J. 2021;27:118–126. doi: 10.12809/hkmj209078.
    1. Anifandis G., Messini C.I., Daponte A., Messinis I.E. COVID-19 and fertility: A virtual reality. Reprod. Biomed. Online. 2020;41:157–159. doi: 10.1016/j.rbmo.2020.05.001.
    1. Porcu E., Tranquillo M.L., Notarangelo L., Ciotti P.M., Calza N., Zuffa S., Mori L., Nardi E., Dirodi M., Cipriani L., et al. High-security closed devices are efficient and safe to protect human oocytes from potential risk of viral contamination during vitrification and storage especially in the COVID-19 pandemic. J. Assist. Reprod. Genet. 2021;38:681–688. doi: 10.1007/s10815-021-02062-y.
    1. Zupin L., Pascolo L., Zito G., Ricci G., Crovella S. SARS-CoV-2 and the next generations: Which impact on reproductive tissues? J. Assist. Reprod. Genet. 2020;37:2399–2403. doi: 10.1007/s10815-020-01917-0.
    1. Mali A., Magdum M., Novotny J. COVID-19 impact on reproduction and fertility. JBRA Assist. Reprod. 2021;25:310–313. doi: 10.5935/1518-0557.20200103.
    1. Wang N., Qin L., Ma L., Yan H. Effect of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) on reproductive system. Stem Cell Res. 2021;52:102189. doi: 10.1016/j.scr.2021.102189.
    1. Abhari S., Kawwass J.F. Endometrial susceptibility to SARS CoV-2: Explained by gene expression across the menstrual cycle? Fertil. Steril. 2020;114:255–256. doi: 10.1016/j.fertnstert.2020.06.046.
    1. Tur-Kaspa I., Tur-Kaspa T., Hildebrand G., Cohen D. COVID-19 may affect male fertility but is not sexually transmitted: A systematic review. F&S Rev. 2021;2:140–149. doi: 10.1016/j.xfnr.2021.01.002.
    1. Cagnacci A., Xholli A. Change in Covid-19 infection and mortality rates in postmenopausal women. Menopause. 2021;28:573–575. doi: 10.1097/GME.0000000000001731.
    1. Al-Lami R.A., Urban R.J., Volpi E., Algburi A.M., Baillargeon J. Sex Hormones and Novel Corona Virus Infectious Disease (COVID-19) Mayo Clin. Proc. 2020;95:1710–1714. doi: 10.1016/j.mayocp.2020.05.013.
    1. Newson L., Manyonda I., Lewis R., Preissner R., Preissner S., Seeland U. Sensitive to Infection but Strong in Defense—Female Sex and the Power of Oestradiol in the COVID-19 Pandemic. Front. Glob. Women’s Health. 2021;2:651752. doi: 10.3389/fgwh.2021.651752.
    1. Channappanavar R., Fett C., Mack M., Eyck P.P.T., Meyerholz D., Perlman S. Sex-Based Differences in Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection. J. Immunol. 2017;198:4046–4053. doi: 10.4049/jimmunol.1601896.
    1. Ding T., Zhang J., Wang T., Cui P., Chen Z., Jiang J., Zhou S., Dai J., Wang B., Yuan S., et al. Potential Influence of Menstrual Status and Sex Hormones on Female Severe Acute Respiratory Syndrome Coronavirus 2 Infection: A Cross-sectional Multicenter Study in Wuhan, China. Clin. Infect. Dis. 2021;72:e240–e248. doi: 10.1093/cid/ciaa1022.
    1. Phelan N., Behan L.A., Owens L. The Impact of the COVID-19 Pandemic on Women’s Reproductive Health. Front. Endocrinol. 2021;12:642755. doi: 10.3389/fendo.2021.642755.
    1. Li Y., Jerkic M., Slutsky A.S., Zhang H. Molecular mechanisms of sex bias differences in COVID-19 mortality. Crit. Care. 2020;24:405. doi: 10.1186/s13054-020-03118-8.
    1. Foresta C., Rocca M.S., Di Nisio A. Gender susceptibility to COVID-19: A review of the putative role of sex hormones and X chromosome. J. Endocrinol. Investig. 2021;44:951–956. doi: 10.1007/s40618-020-01383-6.
    1. Lyon M.F. X-Chromosome Inactivation. Mol. Genet. Sex Determ. 1994:123–142. doi: 10.1016/b978-0-12-728960-1.50011-2.
    1. Posynick B.J., Brown C.J. Escape From X-Chromosome Inactivation: An Evolutionary Perspective. Front. Cell Dev. Biol. 2019;7:241. doi: 10.3389/fcell.2019.00241.
    1. Sama I., Voors A. Men more vulnerable to COVID-19: Explained by ACE2 on the X chromosome? Eur. Heart J. 2020;41:3096. doi: 10.1093/eurheartj/ehaa526.
    1. Alberca R.W., Pereira N.Z., Oliveira L., Gozzi-Silva S.C., Sato M.N. Pregnancy, Viral Infection, and COVID-19. Front. Immunol. 2020;11:1672. doi: 10.3389/fimmu.2020.01672.
    1. Dashraath P., Wong J.L.J., Lim M.X.K., Lim L.M., Li S., Biswas A., Choolani M., Mattar C., Su L.L. Coronavirus disease 2019 (COVID-19) pandemic and pregnancy. Am. J. Obstet. Gynecol. 2020;222:521–531. doi: 10.1016/j.ajog.2020.03.021.
    1. Hirshberg A., Kern-Goldberger A.R., Levine L.D., Pierce-Williams R., Short W.R., Parry S., Berghella V., Triebwasser J.E., Srinivas S.K. Care of critically ill pregnant patients with coronavirus disease 2019: A case series. Am. J. Obstet. Gynecol. 2020;223:286–290. doi: 10.1016/j.ajog.2020.04.029.
    1. Chen H., Guo J., Wang C., Luo F., Yu X., Zhang W., Li J., Zhao D., Xu D., Gong Q., et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: A retrospective review of medical records. Lancet. 2020;395:809–815. doi: 10.1016/S0140-6736(20)30360-3.
    1. Rasmussen S.A., Smulian J.C., Lednicky J.A., Wen T.S., Jamieson D.J. Coronavirus Disease 2019 (COVID-19) and pregnancy: What obstetricians need to know. Am. J. Obstet. Gynecol. 2020;222:415–426. doi: 10.1016/j.ajog.2020.02.017.
    1. Allotey J., Stallings E., Bonet M., Yap M., Chatterjee S., Kew T., Debenham L., Llavall A.C., Dixit A., Zhou D., et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: Living systematic review and meta-analysis. BMJ. 2020;370:m3320. doi: 10.1136/bmj.m3320.
    1. Elsaddig M., Khalil A. Effects of the COVID pandemic on pregnancy outcomes. Best Pract. Res. Clin. Obstet. Gynaecol. 2021;73:125–136. doi: 10.1016/j.bpobgyn.2021.03.004.
    1. Liu H., Wang L.-L., Zhao S.-J., Kwak-Kim J., Mor G., Liao A.-H. Why are pregnant women susceptible to COVID-19? An immunological viewpoint. J. Reprod. Immunol. 2020;139:103122. doi: 10.1016/j.jri.2020.103122.
    1. Zhu H., Wang L., Fang C., Peng S., Zhang L., Chang G., Xia S., Zhou W. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl. Pediatr. 2020;9:51–60. doi: 10.21037/tp.2020.02.06.
    1. Adhikari E.H., Moreno W., Zofkie A.C., Macdonald L., McIntire D.D., Collins R.R.J., Spong C.Y. Pregnancy Outcomes Among Women with and Without Severe Acute Respiratory Syndrome Coronavirus 2 Infection. JAMA Netw. Open. 2020;3:e2029256. doi: 10.1001/jamanetworkopen.2020.29256.
    1. Adhikari E.H., Spong C.Y. COVID-19 Vaccination in Pregnant and Lactating Women. JAMA. 2021;325:1039–1040. doi: 10.1001/jama.2021.1658.
    1. Zambrano L.D., Ellington S., Strid P., Galang R.R., Oduyebo T., Tong V.T., Woodworth K.R., Nahabedian J.F., Azziz-Baumgartner E., Gilboa S.M., et al. Update: Characteristics of Symptomatic Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status—United States, January 22–October 3, 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020;69:1641–1647. doi: 10.15585/mmwr.mm6944e3.
    1. Chen S., Huang B., Luo D.J., Li X., Yang F., Zhao Y., Nie X., Huang B.X. Pregnancy with new coronavirus infection: Clinical characteristics and placental pathological analysis of three cases. Zhonghua Bing Li Xue Za Zhi. 2020;49:418–423. doi: 10.3760/cma.j.cn112151-20200225-00138.
    1. Shanes E.D., Mithal L.B., Otero S., Azad H., Miller E.S., Goldstein J. Placental Pathology in COVID-19. Am. J. Clin. Pathol. 2020;154:23–32. doi: 10.1093/ajcp/aqaa089.
    1. Jiménez-Reina L., Maartens P.J., Jimena-Medina I., Agarwal A., du Plessis S.S. Exercise and Human Reproduction. Springer; New York, NY, USA: 2016. Overview of the Male Reproductive System; pp. 1–17.
    1. Gerber J., Heinrich J., Brehm R. Blood–testis barrier and Sertoli cell function: Lessons from SCCx43KO mice. Reproduction. 2016;151:R15–R27. doi: 10.1530/REP-15-0366.
    1. Douglas G.C., O’Bryan M., Hedger M., Lee D.K.L., Yarski M.A., Smith A.I., LewSuede S.H., Malik A., Sapra A. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2020. Histology, Spermatogenesis.
    1. Douglas G.C., O’Bryan M.K., Hedger M.P., Lee D.K., Yarski M.A., Smith A.I., Lew R.A. The Novel Angiotensin-Converting Enzyme (ACE) Homolog, ACE2, Is Selectively Expressed by Adult Leydig Cells of the Testis. Endocrinology. 2004;145:4703–4711. doi: 10.1210/en.2004-0443.
    1. Wang Z., Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells. 2020;9:920. doi: 10.3390/cells9040920.
    1. Liu X., Chen Y., Tang W., Zhang L., Chen W., Yan Z., Yuan P., Yang M., Kong S., Yan L., et al. Single-cell transcriptome analysis of the novel coronavirus (SARS-CoV-2) associated gene ACE2 expression in normal and non-obstructive azoospermia (NOA) human male testes. Sci. China Life Sci. 2020;63:1006–1015. doi: 10.1007/s11427-020-1705-0.
    1. Letko M., Marzi A., Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020;5:562–569. doi: 10.1038/s41564-020-0688-y.
    1. Pan F., Xiao X., Guo J., Song Y., Li H., Patel D.P., Spivak A.M., Alukal J., Zhang X., Xiong C., et al. No evidence of severe acute respiratory syndrome–coronavirus 2 in semen of males recovering from coronavirus disease. Fertil. Steril. 2020;113:1135–1139. doi: 10.1016/j.fertnstert.2020.04.024.
    1. Song C., Wang Y., Li W., Hu B., Chen G., Xia P., Wang W., Li C., Diao F., Hu Z., et al. Absence of 2019 novel coronavirus in semen and testes of COVID-19 patients. Biol. Reprod. 2020;103:4–6. doi: 10.1093/biolre/ioaa050.
    1. Ma X., Guan C., Chen R., Wang Y., Feng S., Wang R., Qu G., Zhao S., Wang F., Wang X., et al. Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19 patients. Cell. Mol. Immunol. 2021;18:487–489. doi: 10.1038/s41423-020-00604-5.
    1. Bian X.-W., Yao X.-H., Ping Y.-F., Yu S., Shi Y., Luo T., He Z.-C., Tang R., Chen C., Fu W.-J., et al. Autopsy of COVID-19 patients in China. Natl. Sci. Rev. 2020;7:1414–1418. doi: 10.1093/nsr/nwaa123.
    1. Yang M., Chen S., Huang B., Zhong J.-M., Su H., Chen Y.-J., Cao Q., Ma L., He J., Li X.-F., et al. Pathological Findings in the Testes of COVID-19 Patients: Clinical Implications. Eur. Urol. Focus. 2020;6:1124–1129. doi: 10.1016/j.euf.2020.05.009.
    1. Achua J.K., Chu K.Y., Ibrahim E., Khodamoradi K., Delma K.S., Iakymenko O.A., Kryvenko O.N., Arora H., Ramasamy R. Histopathology and Ultrastructural Findings of Fatal COVID-19 Infections on Testis. World J. Men’s Health. 2021;39:65–74. doi: 10.5534/wjmh.200170.
    1. Wu H., Jiang X., Gao Y., Liu W., Wang F., Gong M., Chen R., Yu X., Zhang W., Gao B., et al. Mumps virus infection disrupts blood-testis barrier through the induction of TNF-α in Sertoli cells. FASEB J. 2019;33:12528–12540. doi: 10.1096/fj.201901089R.
    1. Li Y., Zafar M.I., Wang X., Ding X., Li H. Heat Stress and Pulsed Unfocused Ultrasound: The Viability of these Physical Approaches for Drug Delivery into Testicular Seminiferous Tubules. Curr. Drug Deliv. 2020;17:438–446. doi: 10.2174/1567201817666200514080811.
    1. Xu J., Qi L., Chi X., Yang J., Wei X., Gong E., Peh S., Gu J. Orchitis: A Complication of Severe Acute Respiratory Syndrome (SARS) Biol. Reprod. 2006;74:410–416. doi: 10.1095/biolreprod.105.044776.
    1. Li H., Xiao X., Zhang J., Zafar M.I., Wu C., Long Y., Lu W., Pan F., Meng T., Zhao K., et al. Impaired spermatogenesis in COVID-19 patients. eClinicalMedicine. 2020;28:100604. doi: 10.1016/j.eclinm.2020.100604.
    1. Duarte-Neto A.N., Monteiro R., Da Silva L.F.F., Malheiros D.M.A.C., De Oliveira E.P., Theodoro-Filho J., Pinho J.R.R., Gomes-Gouvêa M.S., Salles A.P.M., De Oliveira I.R.S., et al. Pulmonary and systemic involvement in COVID-19 patients assessed with ultrasound-guided minimally invasive autopsy. Histopathology. 2020;77:186–197. doi: 10.1111/his.14160.
    1. Chen L., Huang X., Yi Z., Deng Q., Jiang N., Feng C., Zhou Q., Sun B., Chen W., Guo R. Ultrasound Imaging Findings of Acute Testicular Infection in Patients with Coronavirus Disease 2019: A Single-Center-Based Study in Wuhan, China. J. Ultrasound Med. 2021;40:1787–1794. doi: 10.1002/jum.15558.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Pérez C.V., Sobarzo C.M., Jacobo P.V., Pellizzari E.H., Cigorraga S.B., Denduchis B., Lustig L. Loss of Occludin Expression and Impairment of Blood-Testis Barrier Permeability in Rats with Autoimmune Orchitis: Effect of Interleukin 6 on Sertoli Cell Tight Junctions1. Biol. Reprod. 2012;87:122. doi: 10.1095/biolreprod.112.101709.
    1. Syriou V., Papanikolaou D., Kozyraki A., Goulis D.G. Cytokines and male infertility. Eur. Cytokine Netw. 2018;29:73–82. doi: 10.1684/ecn.2018.0412.
    1. Li D., Jin M., Bao P., Zhao W., Zhang S. Clinical Characteristics and Results of Semen Tests Among Men with Coronavirus Disease 2019. JAMA Netw. Open. 2020;3:e208292. doi: 10.1001/jamanetworkopen.2020.8292.
    1. Paoli D., Pallotti F., Colangelo S., Basilico F., Mazzuti L., Turriziani O., Antonelli G., Lenzi A., Lombardo F. Study of SARS-CoV-2 in semen and urine samples of a volunteer with positive naso-pharyngeal swab. J. Endocrinol. Investig. 2020;43:1819–1822. doi: 10.1007/s40618-020-01261-1.
    1. Holtmann N., Edimiris P., Andree M., Doehmen C., Baston-Buest D., Adams O., Kruessel J.-S., Bielfeld A.P. Assessment of SARS-CoV-2 in human semen—A cohort study. Fertil. Steril. 2020;114:233–238. doi: 10.1016/j.fertnstert.2020.05.028.
    1. Ma L., Xie W., Li D., Shi L., Ye G., Mao Y., Xiong Y., Sun H., Zheng F., Chen Z., et al. Evaluation of sex-related hormones and semen characteristics in reproductive-aged male COVID-19 patients. J. Med. Virol. 2021;93:456–462. doi: 10.1002/jmv.26259.
    1. Temiz M.Z., Dincer M.M., Hacibey I., Yazar R.O., Celik C., Kucuk S.H., Alkurt G., Doganay L., Yuruk E., Muslumanoglu A.Y. Investigation of SARS-CoV-2 in semen samples and the effects of COVID-19 on male sexual health by using semen analysis and serum male hormone profile: A cross-sectional, pilot study. Andrology. 2021;53:e13912. doi: 10.1111/and.13912.
    1. Rawlings S., Ignacio C., Porrachia M., Du P., Smith D.M., Chaillon A. No Evidence of SARS-CoV-2 Seminal Shedding Despite SARS-CoV-2 Persistence in the Upper Respiratory Tract. Open Forum Infect. Dis. 2020;7:ofaa325. doi: 10.1093/ofid/ofaa325.
    1. Pavone C., Giammanco G.M., Baiamonte D., Pinelli M., Bonura C., Montalbano M., Profeta G., Curcurù L., Bonura F. Italian males recovering from mild COVID-19 show no evidence of SARS-CoV-2 in semen despite prolonged nasopharyngeal swab positivity. Int. J. Impot. Res. 2020;32:560–562. doi: 10.1038/s41443-020-00344-0.
    1. Ning J., Li W., Ruan Y., Xia Y., Wu X., Hu K., Ding X., Wu X., Yu L., Zhou J., et al. Effects of 2019 Novel Coronavirus on Male Reproductive System: A Retrospective Study. Preprints. 2020 doi: 10.20944/preprints202004.0280.v1.
    1. Guo L., Zhao S., Li W., Wang Y., Li L., Jiang S., Ren W., Yuan Q., Zhang F., Kong F., et al. Absence of SARS-CoV-2 in semen of a COVID-19 patient cohort. Andrology. 2021;9:42–47. doi: 10.1111/andr.12848.
    1. Ruan Y., Hu B., Liu Z., Liu K., Jiang H., Li H., Li R., Luan Y., Liu X., Yu G., et al. No detection of SARS-CoV-2 from urine, expressed prostatic secretions, and semen in 74 recovered COVID-19 male patients: A perspective and urogenital evaluation. Andrology. 2021;9:99–106. doi: 10.1111/andr.12939.
    1. Kayaaslan B., Korukluoglu G., Hasanoglu I., Kalem A.K., Eser F., Akinci E., Guner R. Investigation of SARS-CoV-2 in Semen of Patients in the Acute Stage of COVID-19 Infection. Urol. Int. 2020;104:678–683. doi: 10.1159/000510531.
    1. He Y., Dong Y.-C. A Perspective on Re-Detectable Positive SARS-CoV-2 Nucleic Acid Results in Recovered COVID-19 Patients. Disaster Med. Public Health Prep. 2020:1–5. doi: 10.1017/dmp.2020.392.
    1. Massarotti C., Garolla A., Maccarini E., Scaruffi P., Stigliani S., Anserini P., Foresta C. SARS-CoV-2 in the semen: Where does it come from? Andrology. 2021;9:39–41. doi: 10.1111/andr.12839.
    1. Carlsen E., Andersson A.-M., Petersen J.H., Skakkebæk N.E. History of febrile illness and variation in semen quality. Hum. Reprod. 2003;18:2089–2092. doi: 10.1093/humrep/deg412.
    1. Sergerie M., Mieusset R., Croute F., Daudin M., Bujan L. High risk of temporary alteration of semen parameters after recent acute febrile illness. Fertil. Steril. 2007;88:970.e1–970.e7. doi: 10.1016/j.fertnstert.2006.12.045.
    1. Robinson L., Gallos I., Conner S.J., Rajkhowa M., Miller D., Lewis S., Kirkman-Brown J.C., Coomarasamy A. The effect of sperm DNA fragmentation on miscarriage rates: A systematic review and meta-analysis. Hum. Reprod. 2012;27:2908–2917. doi: 10.1093/humrep/des261.
    1. Kamkar N., Ramezanali F., Sabbaghian M. The relationship between sperm DNA fragmentation, free radicals and antioxidant capacity with idiopathic repeated pregnancy loss. Reprod. Biol. 2018;18:330–335. doi: 10.1016/j.repbio.2018.11.002.
    1. Hamdi S., Bendayan M., Huyghe E., Soufir J.-C., Amar E., El Osta R., Plotton I., Delalande C., Perrin J., Leroy C., et al. COVID-19 and andrology: Recommendations of the French-speaking society of andrology (Société d’Andrologie de langue Française SALF) Basic Clin. Androl. 2020;30:1–6. doi: 10.1186/s12610-020-00106-4.
    1. Tian Y., Zhou L.-Q. Evaluating the impact of COVID-19 on male reproduction. Reproduction. 2021;161:R37–R44. doi: 10.1530/REP-20-0523.
    1. Schroeder E.T., He J., Yarasheski K., Binder E.F., Castaneda-Sceppa C., Bhasin S., Dieli-Conwright C.M., Kawakubo M., Roubenoff R., Azen S.P., et al. Value of measuring muscle performance to assess changes in lean mass with testosterone and growth hormone supplementation. Eur. J. Appl. Physiol. 2012;112:1123–1131. doi: 10.1007/s00421-011-2077-y.
    1. Rastrelli G., Di Stasi V., Inglese F., Beccaria M., Garuti M., Di Costanzo D., Spreafico F., Greco G.F., Cervi G., Pecoriello A., et al. Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology. 2021;9:88–98. doi: 10.1111/andr.12821.
    1. Ma L., Xie W., Li D., Shi L., Mao Y., Xiong Y., Zhang Y., Zhang M. Effect of SARS-CoV-2 infection upon male gonadal function: A single center-based study. medRxiv. 2020 doi: 10.1101/2020.03.21.20037267.
    1. Selvaraj K., Ravichandran S., Krishnan S., Radhakrishnan R.K., Manickam N., Kandasamy M. Testicular Atrophy and Hypothalamic Pathology in COVID-19: Possibility of the Incidence of Male Infertility and HPG Axis Abnormalities. Reprod. Sci. 2021:1–8. doi: 10.1007/s43032-020-00441-x.
    1. Pascual-Goñi E., Fortea J., Martínez-Domeño A., Rabella N., Tecame M., Gómez-Oliva C., Querol L., Gómez-Ansón B. COVID-19-associated ophthalmoparesis and hypothalamic involvement. Neurol. Neuroimmunol. Neuroinflamm. 2020;7:e823. doi: 10.1212/NXI.0000000000000823.
    1. Nampoothiri S., Sauve F., Ternier G., Fernandois D., Coelho C., Imbernon M., Deligia E., Perbet R., Florent V., Baroncini M., et al. The hypothalamus as a hub for SARS-CoV-2 brain infection and pathogenesis. bioRxiv. 2020 doi: 10.1101/2020.06.08.139329.
    1. Koçak O., Koçak Ö., Younis M. The Psychological Consequences of COVID-19 Fear and the Moderator Effects of Individuals’ Underlying Illness and Witnessing Infected Friends and Family. Int. J. Environ. Res. Public Health. 2021;18:1836. doi: 10.3390/ijerph18041836.
    1. Taquet M., Luciano S., Geddes J., Harrison P.J. Bidirectional associations between COVID-19 and psychiatric disorder: A study of 62,354 COVID-19 cases. medRxiv. 2020 doi: 10.1101/2020.08.14.20175190.
    1. Randolph H.E., Barreiro L.B. Herd Immunity: Understanding COVID-19. Immunity. 2020;52:737–741. doi: 10.1016/j.immuni.2020.04.012.
    1. Association of Reproductive and Clinical Scientists, British Fertility Society Covid-19 Vaccines and Fertility. 2021. [(accessed on 27 September 2021)]. Available online: .
    1. Bowman C.J., Bouressam M., Campion S.N., Cappon G.D., Catlin N.R., Cutler M.W., Diekmann J., Rohde C.M., Sellers R.S., Lindemann C. Lack of effects on female fertility and prenatal and postnatal offspring development in rats with BNT162b2, a mRNA-based COVID-19 vaccine. Reprod. Toxicol. 2021;103:28–35. doi: 10.1016/j.reprotox.2021.05.007.
    1. Polack F.P., Thomas S.J., Kitchin N., Absalon J., Gurtman A., Lockhart S., Perez J.L., Marc G.P., Moreira E.D., Zerbini C., et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020;383:2603–2615. doi: 10.1056/NEJMoa2034577.
    1. Wang F., Kream R.M., Stefano G.B. An Evidence Based Perspective on mRNA-SARS-CoV-2 Vaccine Development. Med. Sci. Monit. 2020;26:e924700-1. doi: 10.12659/MSM.924700.

Source: PubMed

3
Iratkozz fel