Growing up in a Bubble: Using Germ-Free Animals to Assess the Influence of the Gut Microbiota on Brain and Behavior

Pauline Luczynski, Karen-Anne McVey Neufeld, Clara Seira Oriach, Gerard Clarke, Timothy G Dinan, John F Cryan, Pauline Luczynski, Karen-Anne McVey Neufeld, Clara Seira Oriach, Gerard Clarke, Timothy G Dinan, John F Cryan

Abstract

There is a growing recognition of the importance of the commensal intestinal microbiota in the development and later function of the central nervous system. Research using germ-free mice (mice raised without any exposure to microorganisms) has provided some of the most persuasive evidence for a role of these bacteria in gut-brain signalling. Key findings show that the microbiota is necessary for normal stress responsivity, anxiety-like behaviors, sociability, and cognition. Furthermore, the microbiota maintains central nervous system homeostasis by regulating immune function and blood brain barrier integrity. Studies have also found that the gut microbiota influences neurotransmitter, synaptic, and neurotrophic signalling systems and neurogenesis. The principle advantage of the germ-free mouse model is in proof-of-principle studies and that a complete microbiota or defined consortiums of bacteria can be introduced at various developmental time points. However, a germ-free upbringing can induce permanent neurodevelopmental deficits that may deem the model unsuitable for specific scientific queries that do not involve early-life microbial deficiency. As such, alternatives and complementary strategies to the germ-free model are warranted and include antibiotic treatment to create microbiota-deficient animals at distinct time points across the lifespan. Increasing our understanding of the impact of the gut microbiota on brain and behavior has the potential to inform novel management strategies for stress-related gastrointestinal and neuropsychiatric disorders.

Keywords: cognitive dysfunction; germ-free mouse; microbiota-gut-brain axis; social development; stress response.

© The Author 2016. Published by Oxford University Press on behalf of CINP.

Figures

Figure 1.
Figure 1.
Germ-free (GF) mice as a tool to study the microbiota-gut-brain axis. GF mice are raised in isolation in a GF unit without any exposure to microorganisms. Gut-brain signalling is altered due to the lack of bacterial exposure throughout the lifetime. The microbiota is required for normal stress responsivity, anxiety-like behaviors, sociability, and cognition. Furthermore, the microbiota protects CNS homeostasis by regulating immune function and blood brain barrier (BBB) integrity.

References

    1. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25.
    1. Abrams GD, Bauer H, Sprinz H. (1962) Influence of the normal flora on mucosal morphology and cellular renewal in the ileum. A comparison of germ-free and conventional mice. DTIC Document.
    1. Akira S, Hemmi H. (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85:85–95.
    1. Ananthakrishnan AN. (2015) Epidemiology and risk factors for IBD. Nat Rev Gastroenterol Hepatol 12:205–217.
    1. Arentsen T, Raith H, Qian Y, Forssberg H, Heijtz RD. (2015) Host microbiota modulates development of social preference in mice. Microb Ecol Health Dis 26.
    1. Aroniadis OC, Brandt LJ. (2013) Fecal microbiota transplantation: past, present and future. Curr Opin Gastroenterol 29:79–84.
    1. Ascherio A. (2013) Environmental factors in multiple sclerosis. Expert Rev Neurother 13:3–9.
    1. Autry AE, Monteggia LM. (2012) Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol Rev 64:238–258.
    1. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101:15718–15723
    1. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920.
    1. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci 104:979–984.
    1. Ballabh P, Braun A, Nedergaard M. (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13.
    1. Barnes RD, Tuffrey M, Cook R. (1968) A “germfree” human isolator. Lancet 291:622–623.
    1. Barnes RD, Bentovim A, Hensman S, Piesowicz AT. (1969. a) Care and observation of a germ-free neonate. Arch Dis Child 44:211.
    1. Barnes RD, Fairweather DVI, Holliday J, Keane C, Piesowicz A, Soothill JF, Tuffrey M. (1969. b) A germfree infant. Lancet 293:168–171.
    1. Becker KG, Simon RM, Bailey-Wilson JE, Freidlin B, Biddison WE, McFarland HF, Trent JM. (1998) Clustering of non-major histocompatibility complex susceptibility candidate loci in human autoimmune diseases. Proc Natl Acad Sci 95:9979–9984.
    1. Belzung C, Griebel G. (2001) Measuring normal and pathological anxiety-like behavior in mice: a review. Behav Brain Res 125:141–149.
    1. Bengmark S. (2013) Gut microbiota, immune development and function. Pharmacol Res 69:87–113.
    1. Bercik P. (2011) The microbiota–gut–brain axis: learning from intestinal bacteria? Gut 60:288–289.
    1. Bercik P, Collins SM. (2014) The effects of inflammation, infection and antibiotics on the microbiota-gut-brain axis. in: microbial endocrinology: the microbiota-gut-brain axis in health and disease, pp 279–289. Springer.
    1. Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, Blennerhassett P, Macri J, McCoy KD, Verdu EF, Collins SM. (2011. a) The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 141:599–609.e3.
    1. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli GE, Collins SM, Verdu EF. (2011. b) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut–brain communication. Neurogastroenterol Motil 23:1132–1139.
    1. Bercik P, Verdu EF, Foster JA, Macri J, Potter M, Huang X, Malinowski P, Jackson W, Blennerhassett P, Neufeld KA. (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology 139:2102–2112.
    1. Berer K, Mues M, Koutrolos M, Al Rasbi Z, Boziki M, Johner C, Wekerle H, Krishnamoorthy G. (2011) Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479:538–541.
    1. Berger M, Gray JA, Roth BL. (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366.
    1. Betts AO, Trexler PC. (1969) Development and possible uses for gnotobiotic farm animals. Vet Rec 84:630–632.
    1. Bibiloni R. (2012) Rodent models to study the relationships between mammals and their bacterial inhabitants. Gut Microbes 3:536–543.
    1. Blackshaw LA, Brookes SJH, Grundy D, Schemann M. (2007) Sensory transmission in the gastrointestinal tract. Neurogastroenterol Motil 19:1–19.
    1. Borody TJ, Khoruts A. (2012) Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 9:88–96.
    1. Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. (2014) Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med 20:509–518.
    1. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, Korecka A, Bakocevic N, Ng LG, Kundu P, Gulyás B, Halldin C, Hultenby K, Nilsson H, Hebert H, Volpe BT, Diamond B, Pettersson S. (2014) The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med 6:263ra158–ra263ra158.
    1. Bravo JA, Forsythe P, Chew M V, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci 108:16050–16055.
    1. Burns A, Iliffe S. (2009) Alzheimer’s disease. BMJ 338.
    1. Burokas A, Moloney RD, Dinan TG, Cryan JF. (2015) Chapter one-microbiota regulation of the mammalian gut–brain axis. Adv Appl Microbiol 91:1–62.
    1. Clarke G, Cryan JF, Dinan TG, Quigley EM. (2012) Review article: probiotics for the treatment of irritable bowel syndrome–focus on lactic acid bacteria. Aliment Pharmacol Ther 35:403–413.
    1. Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF. (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18:666–673.
    1. Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM. (2014) Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil 26:98–107.
    1. Collins SM, Surette M, Bercik P. (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Micro 10:735–742.
    1. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697.
    1. Crichton M. (1993) The andromeda strain. New York: Random House.
    1. Crumeyrolle-Arias M, Jaglin M, Bruneau A, Vancassel S, Cardona A, Daugé V, Naudon L, Rabot S. (2014) Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology 42:207–217.
    1. Cryan JF, Dinan TG. (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neurosci 13:701–712.
    1. Cryan JF, Dinan TG. (2015) Microbiota and neuroimmune signalling: Metchnikoff to microglia. Nat Rev Gastroenterol Hepatol. In press.
    1. Cryan JF, O’Mahony SM. (2011) The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23:187–192.
    1. Curran EA, Dalman C, Kearney PM, Kenny LC, Cryan JF, Dinan TG, Khashan AS. (2015. a) Association between obstetric mode of delivery and autism spectrum disorder: a population-based sibling design study. JAMA Psychiatry 72:935–942.
    1. Curran EA, O’Neill SM, Cryan JF, Kenny LC, Dinan TG, Khashan AS, Kearney PM. (2015. b) Research review: birth by caesarean section and development of autism spectrum disorder and attention‐deficit/hyperactivity disorder: a systematic review and meta‐analysis. J Child Psychol Psychiatry 56:500–508.
    1. De Palma G, Blennerhassett P, Lu J, Deng Y, Park AJ, Green W, Denou E, Silva MA, Santacruz A, Sanz Y. (2015) Microbiota and host determinants of behavioral phenotype in maternally separated mice. Nat Commun 6.
    1. De Theije CGM, Wopereis H, Ramadan M, van Eijndthoven T, Lambert J, Knol J, Garssen J, Kraneveld AD, Oozeer R. (2014) Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain Behav Immun 37:197–206.
    1. Den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340.
    1. Dendrou CA, Fugger L, Friese MA. (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15:545–558.
    1. Deng W, Aimone JB, Gage FH. (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350.
    1. Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. (2014) Microbiota is essential for social development in the mouse. Mol Psychiatry 19:146–148.
    1. Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, Cotter PD, Dinan TG, Cryan JF. (2015) Gut microbiota depletion from early adolescence in mice: Implications for brain and behavior. Brain Behav Immun 48:165–173.
    1. Dinan TG, Cryan JF. (2012) Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology 37:1369–1378.
    1. Dinan TG, Stanton C, Cryan JF. (2013) Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74:720–726.
    1. Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NMJ, Magness S, Jobin C, Lund PK. (2010) High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 5:e12191.
    1. Distrutti E, O’Reilly J-A, McDonald C, Cipriani S, Renga B, Lynch MA, Fiorucci S. (2014) Modulation of intestinal microbiota by the probiotic VSL# 3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS One 9:e106503.
    1. El Aidy S, Dinan TG, Cryan JF. (2015) Gut microbiota: the conductor in the orchestra of immune–neuroendocrine communication. Clin Ther 37:954–967.
    1. El Aidy S, Kunze W, Bienenstock J, Kleerebezem M. (2012) The microbiota and the gut-brain axis: insights from the temporal and spatial mucosal alterations during colonisation of the germfree mouse intestine. Benef Microbes 3:251–259.
    1. Ennaceur A, Delacour J. (1988) A new one-trial test for neurobiological studies of memory in rats. 1: behavioral data. Behav Brain Res 31:47–59.
    1. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermöhlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M. (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965–977.
    1. Ezenwa VO, Gerardo NM, Inouye DW, Medina M, Xavier JB. (2012) Animal behavior and the microbiome. Science 338:198–199.
    1. Faith JJ, Rey FE, O’Donnell D, Karlsson M, McNulty NP, Kallstrom G, Goodman AL, Gordon JI. (2010) Creating and characterizing communities of human gut microbes in gnotobiotic mice. ISME J 4:1094.
    1. Fakhoury M. (2015) Autistic spectrum disorders: a review of clinical features, theories and diagnosis. Int J Dev Neurosci 43:70–77.
    1. Fleissner CK, Huebel N, El-Bary MMA, Loh G, Klaus S, Blaut M. (2010) Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr 104:919–929.
    1. Fond G, Loundou A, Hamdani N, Boukouaci W, Dargel A, Oliveira J, Roger M, Tamouza R, Leboyer M, Boyer L. (2014) Anxiety and depression comorbidities in irritable bowel syndrome (IBS): a systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci 264:651–660.
    1. Forsythe P, Kunze WA. (2013) Voices from within: gut microbes and the CNS. Cell Mol life Sci 70:55–69.
    1. Foster JA, Lyte M, Meyer E, Cryan JF. (2015) Gut microbiota and brain function: an evolving field in neuroscience. Int J Neuropsychopharmacol doi: 10.1093/ijnp/pyv114.
    1. Foster JA, McVey Neufeld KA. (2013) Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 36:305–312.
    1. Frank DN, Pace NR. (2008) Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol 24:4–10.
    1. Funkhouser LJ, Bordenstein SR. (2013) Mom knows best: the universality of maternal microbial transmission. PLoS Biol 11:e1001631.
    1. Furness JB. (2006) The organisation of the autonomic nervous system: peripheral connections. Auton Neurosci 130:1–5.
    1. Gareau MG, Wine E, Rodrigues DM, Cho JH, Whary MT, Philpott DJ, MacQueen G, Sherman PM. (2011) Bacterial infection causes stress-induced memory dysfunction in mice. Gut 60:307–317.
    1. Gilbert JA, Krajmalnik-Brown R, Porazinska DL, Weiss SJ, Knight R. (2013) Toward effective probiotics for autism and other neurodevelopmental disorders. Cell 155:1446–1448.
    1. Goehler LE, Park SM, Opitz N, Lyte M, Gaykema RPA. (2008) Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav Immun 22:354–366.
    1. Golubeva A V, Crampton S, Desbonnet L, Edge D, O’Sullivan O, Lomasney KW, Zhdanov A V, Crispie F, Moloney RD, Borre YE. (2015) Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology 60:58–74.
    1. Gordon HA, Bruckner-Kardoss E. (1961) Effect of normal microbial flora on intestinal surface area. Am J Physiol Content 201:175–178.
    1. Gordon HA, Bruckner-kardoss E, Wostmann BS. (1966) Aging in germ-free mice: life tables and lesions observed at natural death. J Gerontol 21:380–387.
    1. Gordon HA, Pesti L. (1971) The gnotobiotic animal as a tool in the study of host microbial relationships. Bact Rev 35:390–429.
    1. Gordon HA, Wostmann BS. (1960) Morphological studies on the germfreealbino rat. Anat Rec 137:65–70.
    1. Goverman J. (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407.
    1. Grenham S, Clarke G, Cryan J, Dinan T. (2011) Brain–gut–microbe communication in health and disease. Front Physiol 2:94.
    1. Gustaffson B, Kahlson G, Rosengren E. (1957) Biogenesis of histamine studied by its distribution and urinary excretion in germ free reared and not germ free rats fed a histamine free diet. Acta Physiol Scand 41:217–228.
    1. Gustafsson BE. (1959. a) Lightweight stainless steel systems for rearing germfree animals. Ann N Y Acad Sci 78:17–28.
    1. Gustafsson BE. (1959. b) Vitamin K deficiency in germfree rats. Ann N Y Acad Sci 78:166–174.
    1. Hamilton W. (1964) The genetical evolution of social behavior. J Theortical Biol 7:1–52.
    1. Hansen T, Gobel R, Hansen T, Pedersen O. (2015) The gut microbiome in cardio-metabolic health. Genome Med 7:33.
    1. Harach T, Marungruang N, Dutilleul N, Cheatham V, Mc Coy KD, Neher JJ, Jucker M, Fåk F, Bolmont T. (2015) Reduction of Alzheimer’s disease beta-amyloid pathology in the absence of gut microbiota. arXiv Prepr arXiv 150902273.
    1. Hardy JA, Higgins GA. (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184.
    1. Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Pettersson S. (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 108:3047–3052.
    1. Hintze KJ, Cox JE, Rompato G, Benninghoff AD, Ward RE, Broadbent J, Lefevre M. (2014) Broad scope method for creating humanized animal models for animal health and disease research through antibiotic treatment and human fecal transfer. Gut Microbes 5:183–191.
    1. Hooper L V, Gordon JI. (2001) Commensal host-bacterial relationships in the gut. Science 292:1115–1118.
    1. Hooper L V, Macpherson AJ. (2010) Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat Rev Immunol 10:159–169.
    1. Hosoi T, Okuma Y, Nomura Y. (2000) Electrical stimulation of afferent vagus nerve induces IL-1β expression in the brain and activates HPA axis. Am J Physiol Integr Comp Physiol 279:R141–R147.
    1. Høverstad T, Midtvedt T. (1986) Short-chain fatty acids in germfree mice and rats. J Nutr 116:1772–1776.
    1. Howard MA, Cowell PE, Boucher J, Broks P, Mayes A, Farrant A, Roberts N. (2000) Convergent neuroanatomical and behavioral evidence of an amygdala hypothesis of autism. Neuroreport 11:2931–2935.
    1. Howitt MR, Garrett WS. (2012) A complex microworld in the gut: gut microbiota and cardiovascular disease connectivity. Nat Med 18:1188–1189.
    1. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK. (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463.
    1. Husebye E, Hellström PM, Midtvedt T. (1994) Intestinal microflora stimulates myoelectric activity of rat small intestine by promoting cyclic initiation and aboral propagation of migrating myoelectric complex. Dig Dis Sci 39:946–956.
    1. Husebye E, Hellström PM, Sundler F, Chen J, Midtvedt T. (2001) Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am J Physiol Liver Physiol 280:G368–G380.
    1. Ittner LM, Götz J. (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12:67–72.
    1. Janssen AWF, Kersten S. (2015) The role of the gut microbiota in metabolic health. FASEB J 29:3111–3123.
    1. Jeffery IB, O’Toole PW, Ohman L, Claesson MJ, Deane J, Quigley EMM, Simren M. (2012) An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61:997–1006.
    1. Kang D-W, Park JG, Ilhan ZE, Wallstrom G, LaBaer J, Adams JB, Krajmalnik-Brown R. (2013) Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8:e68322.
    1. Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Bäckhed F, Nielsen J. (2012) Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 3:1245.
    1. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F. (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103.
    1. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. (2015) Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci 9:392.
    1. Kennedy PJ, Clarke G, O’Neill A, Groeger JA, Quigley EMM, Shanahan F, Cryan JF, Dinan TG. (2014. a) Cognitive performance in irritable bowel syndrome: evidence of a stress-related impairment in visuospatial memory. Psychol Med 44:1553–1566.
    1. Kennedy PJ, Cryan JF, Dinan TG, Clarke G. (2014. b) Irritable bowel syndrome: a microbiome-gut-brain axis disorder? World J Gastroenterol WJG 20:14105.
    1. Kennedy PJ, Cryan JF, Quigley EMM, Dinan TG, Clarke G. (2014. c) A sustained hypothalamic–pituitary–adrenal axis response to acute psychosocial stress in irritable bowel syndrome. Psychol Med 44:3123–3134.
    1. Kettenmann H, Hanisch U-K, Noda M, Verkhratsky A. (2011) Physiology of microglia. Physiol Rev 91:461–553.
    1. Kirk RGW. (2012) “Life in a germ-free world”: isolating life from the laboratory animal to the bubble boy. Bull Hist Med 86:237–275.
    1. Knudsen E. (2004) Sensitive periods in the development of the brain and behavior. Cogn Neurosci J 16:1412–1425.
    1. Kohane IS, McMurry A, Weber G, MacFadden D, Rappaport L, Kunkel L, Bickel J, Wattanasin N, Spence S, Murphy S. (2012) The co-morbidity burden of children and young adults with autism spectrum disorders. PLoS One 7:e33224–e33224.
    1. Koren O, Spor A, Felin J, Fåk F, Stombaugh J, Tremaroli V, Behre CJ, Knight R, Fagerberg B, Ley RE, Bäckhed F. (2011) Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci 108:4592–4598.
    1. Kunze WA, Mao Y, Wang B, Huizinga JD, Ma X, Forsythe P, Bienenstock J. (2009) Lactobacillus reuteri enhances excitability of colonic AH neurons by inhibiting calcium-dependent potassium channel opening. J Cell Mol Med 13:2261–2270.
    1. Lawrence RJ. (1985) David the “Bubble Boy” and the boundaries of the human. JAMA 253:74–76.
    1. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci 108:4615–4622.
    1. Leone V, Gibbons SM, Martinez K, Hutchison AL, Huang EY, Cham CM, Pierre JF, Heneghan AF, Nadimpalli A, Hubert N, Zale E, Wang Y, Huang Y, Theriault B, Dinner AR, Musch MW, Kudsk KA, Prendergast BJ, Gilbert JA, Chang EB. (2015) Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17:681–689.
    1. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023.
    1. Lombardo MP. (2008) Access to mutualistic endosymbiotic microbes: an underappreciated benefit of group living. Behav Ecol Sociobiol 62:479–497.
    1. Luckey T. (2012) Germfree life and gnotobiology. Elsevier.
    1. Lyte M. (2013) Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior.
    1. Lyte M, Li W, Opitz N, Gaykema RPA, Goehler LE. (2006) Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol Behav 89:350–357.
    1. Lyte M, Varcoe JJ, Bailey MT. (1998) Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol Behav 65:63–68.
    1. Macpherson AJ, Harris NL. (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4:478–485.
    1. Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A. (2015) The gut microbiota and host health: a new clinical frontier. Gut 65:330–339.
    1. Marín-Burgin A, Schinder AF. (2012) Requirement of adult-born neurons for hippocampus-dependent learning. Behav Brain Res 227:391–399.
    1. Mayer EA, Padua D, Tillisch K. (2014) Altered brain-gut axis in autism: comorbidity or causative mechanisms? Bioessays 36:933–939.
    1. Mayer EA, Tillisch K, Gupta A. (2015) Gut/brain axis and the microbiota. J Clin Invest 125:0.
    1. Mcvey Neufeld KA, Mao YK, Bienenstock J, Foster JA, Kunze WA. (2013) The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterol Motil 25:183–e88.
    1. McVey Neufeld KA, Perez-Burgos A, Mao YK, Bienenstock J, Kunze WA. (2015) The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin. Neurogastroenterol Motil 27:627–636.
    1. Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, Bisson J-F, Rougeot C, Pichelin M, Cazaubiel M. (2011) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr 105:755–764.
    1. Mielcarz DW, Kasper LH. (2015) The gut microbiome in multiple sclerosis. Curr Treat Options Neurol 17:1–10.
    1. Miller BR, Hen R. (2015) The current state of the neurogenic theory of depression and anxiety. Curr Opin Neurobiol 30:51–58.
    1. Miyakawa M. (1959) The Miyakawa remote-control germfree rearing unit. Ann N Y Acad Sci 78:37–46.
    1. Montiel-Castro AJ, González-Cervantes RM, Bravo-Ruiseco G, Pacheco-López G. (2013) The microbiota-gut-brain axis: neurobehavioral correlates, health and sociality. Front Integr Neurosci 7.
    1. Moser M-B, Moser EI, Forrest E, Andersen P, Morris RG. (1995) Spatial learning with a minislab in the dorsal hippocampus. Proc Natl Acad Sci 92:9697–9701.
    1. Mulle JG, Sharp WG, Cubells JF. (2013) The gut microbiome: a new frontier in autism research. Curr Psychiatry Rep 15:1–9.
    1. Musiek ES, Holtzman DM. (2015) Three dimensions of the amyloid hypothesis: time, space and’wingmen’. Nat Neurosci:800–806.
    1. Myint A-M, Kim YK, Verkerk R, Scharpé S, Steinbusch H, Leonard B. (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98:143–151.
    1. Neufeld KM, Kang N, Bienenstock J, Foster JA. (2011) Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23:255–265.
    1. Nicholson J, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Petttersen S. (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267.
    1. Nuttall GHF, Thierfelder H. (1897) Thierisches Leben ohne Bakterien im Verdauungskanal.(II. Mittheilung). Hoppe Seylers Z Physiol Chem 22:62–73.
    1. O’Leary OF, Cryan JF. (2014) A ventral view on antidepressant action: roles for adult hippocampal neurogenesis along the dorsoventral axis. Trends Pharmacol Sci 35:675–687.
    1. O’Mahony CM, Sweeney FF, Daly E, Dinan TG, Cryan JF. (2010) Restraint stress-induced brain activation patterns in two strains of mice differing in their anxiety behavior. Behav Brain Res 213:148–154.
    1. O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho A-M, Quigley EMM, Cryan JF, Dinan TG. (2009) Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 65:263–267.
    1. O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48.
    1. O’Toole PW, Claesson MJ. (2010) Gut microbiota: changes throughout the lifespan from infancy to elderly. Int Dairy J 20:281–291.
    1. Ogbonnaya ES, Clarke G, Shanahan F, Dinan TG, Cryan JF, O’Leary OF. (2015) Adult hippocampal neurogenesis is regulated by the microbiome. Biol Psychiatry 78:e7–9.
    1. Park H, Poo M. (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14:7–23.
    1. Pasteur L. (1885) Observations relatives à la note précédente de M. Duclaux. CR Acad Sci 100:68.
    1. Perez-Burgos A, Mao Y-K, Bienenstock J, Kunze WA. (2014) The gut-brain axis rewired: adding a functional vagal nicotinic “sensory synapse.” FASEB J 28:3064–3074.
    1. Powley TL, Wang XY, Fox EA, Phillips RJ, Liu LWC, Huizinga JD. (2008) Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus. Neurogastroenterol Motil 20:69–79.
    1. Prinz M, Priller J. (2014) Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci 15:300–312.
    1. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D. (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60.
    1. Rabot S, Membrez M, Bruneau A, Gérard P, Harach T, Moser M, Raymond F, Mansourian R, Chou CJ. (2010) Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J 24:4948–4959.
    1. Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jäggi F, Wolburg H, Gengler S. (2006) Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep 7:940–946.
    1. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241.
    1. Ransohoff RM, Perry VH. (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145.
    1. Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC. (2015) Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 29:1395–1403.
    1. Reyniers JA. (1942) Design characteristics of double cubicle system for protecting babies in nurseries. Am J Dis Child 63:934–944.
    1. Reyniers JA. (1943) The control of cross infection among limited populations. The use of mechanical barriers in preventing cross infection among hospitalized infant populations. Micrurgical Germ-Free Tech Their Appl to Exp Biol Med Balt MD Charles C Thomas Publ:205–232.
    1. Reyniers JA. (1959) The pure culture concept and gnotobiotics. Ann N Y Acad Sci 78:3–16.
    1. Reyniers JA, Sacksteder MR. (1958) Observations on the survival of germfree C3H mice and their resistance to a contaminated environment. In: Proc Anim Care Panel, pp 41–53.
    1. Reyniers JA, Trexler PC, Ervin RF. (1946) Rearing germ-free albino rats. Lobund Rep 1.
    1. Rhee SH, Pothoulakis C, Mayer EA. (2009) Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6:306–314.
    1. Ridaura V, Belkaid Y. (2015) Gut microbiota: the link to your second brain. Cell 161:193–194.
    1. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR. (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214.
    1. Rosenfeld CS. (2015) Microbiome disturbances and autism spectrum disorders. Drug Metab Dispos 43:1557–1571.
    1. Salonen A, de Vos WM, Palva A. (2010) Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology 156:3205–3215.
    1. Sampson TR, Mazmanian SK. (2015) Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17:565–576.
    1. Savignac HM, Tramullas M, Kiely B, Dinan TG, Cryan JF. (2015) Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav Brain Res 287:59–72.
    1. Schafer DP, Stevens B. (2013) Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Curr Opin Neurobiol 23:1034–1040.
    1. Sekirov I, Russell SL, Antunes LCM, Finlay BB. (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904.
    1. Shanahan F. (2002) The host–microbe interface within the gut. Best Pract Res Clin Gastroenterol 16:915–931.
    1. Sheehan D, Moran C, Shanahan F. (2015) The microbiota in inflammatory bowel disease. J Gastroenterol 50:495–507.
    1. Shen J, Obin MS, Zhao L. (2013) The gut microbiota, obesity and insulin resistance. Mol Aspects Med 34:39–58.
    1. Smith K, McCoy KD, Macpherson AJ. (2007) Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. In: Seminars in immunology, pp 59–69. Elsevier.
    1. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA. (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behavior. Nature 476:458–461.
    1. Stilling RM, Bordenstein SR, Dinan TG, Cryan JF. (2014. a) Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front Cell Infect Microbiol 4:147.
    1. Stilling RM, Dinan TG, Cryan JF. (2014. b) Microbial genes, brain and behavior–epigenetic regulation of the gut–brain axis. Genes, Brain Behav 13:69–86.
    1. Stilling RM, Ryan FJ, Hoban AE, Shanahan F, Clarke G, Claesson MJ, Dinan TG, Cryan JF. (2015) Microbes and neurodevelopment - absence of microbiota during early life increases activity-related transcriptional pathways in the amygdala. Brain Behav Immun 50:209–220.
    1. Stromnes IM, Goverman JM. (2006) Active induction of experimental allergic encephalomyelitis. Nat Protoc 1:1810–1819.
    1. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, Kubo C, Koga Y. (2004) Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558:263–275.
    1. Suez J, Korem T, Zeevi D, Zilberman-schapira G, Thaiss CA, Maza O, Israeli D, Zmora N, Gilad S, Weinberger A, Kuperman Y, Harmelin A, Kolodkin-gal I, Shapiro H. (2014) Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514:181–186.
    1. Sumi Y, Miyakawa M, Kanzaki M, Kotake Y. (1977) Vitamin B-6 deficiency in germfree rats. J Nutr 107:1707–1714.
    1. Tana C, Umesaki Y, Imaoka A, Handa T, Kanazawa M, Fukudo S. (2010) Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol Motil 22:512–e115.
    1. Tazume S, Umehara K, Matsuzawa H, Aikawa H, Hashimoto K, Sasaki S. (1991) Effects of germfree status and food restriction on longevity and growth of mice. Jikken Dobutsu 40:517–522.
    1. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, Kuperman Y, Biton I, Gilad S, Harmelin A, Shapiro H, Halpern Z, Segal E, Elinav E. (2014) transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159:514–529.
    1. Tremaroli V, Backhed F. (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249.
    1. Troyer K. (1984) Microbes, herbivory and the evolution of social behavior. J Theor Biol 106:157–169.
    1. Tung J, Barreiro LB, Burns MB, Grenier J-C, Lynch J, Grieneisen LE, Altmann J, Alberts SC, Blekhman R, Archie EA. (2015) Social networks predict gut microbiome composition in wild baboons. Elife 4:1–18.
    1. Tuohy KM, Fava F, Viola R. (2014) “The way to a man”s heart is through his gut microbiota’ – dietary pro- and prebiotics for the management of cardiovascular risk. Proc Nutr Soc 73:172–185.
    1. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP. (2009. a) A core gut microbiome in obese and lean twins. Nature 457:480–484.
    1. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031.
    1. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. (2009. b) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14–ra16ra14.
    1. Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H. (1995) Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol 39:555–562.
    1. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper L V. (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci 105:20858–20863.
    1. Verdu EF, Bercik P, Verma-Gandhu M, Huang X-X, Blennerhassett P, Jackson W, Mao Y, Wang L, Rochat F, Collins SM. (2006) Specific probiotic therapy attenuates antibiotic induced visceral hypersensitivity in mice. Gut 55:182–190.
    1. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg JE, Bloks VW, Groen AK, Heilig HG, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JB, Nieuwdorp M. (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–916.e7.
    1. Wang M, Donovan SM. (2015) Human microbiota-associated swine: current progress and future opportunities. ILAR J 56:63–73.
    1. Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC, Group CCS. (2003) Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci 100:12877–12882.
    1. Williams SCP. (2014) Gnotobiotics. Proc Natl Acad Sci 111:1661.
    1. Wolfe AJ. (2002) Germs in space. Isis 93:183–205.
    1. Wostmann B, Bruckner-Kardoss E. (1959) Development of cecal distention in germ-free baby rats. Am J Physiol Content 197:1345–1346.
    1. Wostmann BS, Knight PL, Keeley LL, Kan DF. (1962) Metabolism and function of thiamine and naphthoquinones in germfree and conventional rats. In: Federation proceedings, pp 120–124.
    1. Wostmann BS, Larkin C, Moriarty A, Bruckner-Kardoss E. (1983) Dietary intake, energy metabolism, and excretory losses of adult male germfree Wistar rats. Lab Anim Sci 33:46–50.
    1. Wostmann BS, Pleasants JR, Bealmear P, Kincade PW. (1970) Serum proteins and lymphoid tissues in germ-free mice fed a chemically defined, water soluble, low molecular weight diet. Immunology 19:443.
    1. Wrase J, Reimold M, Puls I, Kienast T, Heinz A. (2006) Serotonergic dysfunction: brain imaging and behavioral correlates. Cogn Affect Behav Neurosci 6:53–61.
    1. Wu JCY. (2012) Psychological co-morbidity in functional gastrointestinal disorders: epidemiology, mechanisms and management. J Neurogastroenterol Motil 18:13–18.
    1. Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY. (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276.
    1. Zimomra ZR, Porterfield VM, Camp RM, Johnson JD. (2011) Time-dependent mediators of HPA axis activation following live Escherichia coli. Am J Physiol Integr Comp Physiol 301:R1648–R1657.

Source: PubMed

3
Iratkozz fel