Selenium, Selenoproteins, and Immunity

Joseph C Avery, Peter R Hoffmann, Joseph C Avery, Peter R Hoffmann

Abstract

Selenium is an essential micronutrient that plays a crucial role in development and a wide variety of physiological processes including effect immune responses. The immune system relies on adequate dietary selenium intake and this nutrient exerts its biological effects mostly through its incorporation into selenoproteins. The selenoproteome contains 25 members in humans that exhibit a wide variety of functions. The development of high-throughput omic approaches and novel bioinformatics tools has led to new insights regarding the effects of selenium and selenoproteins in human immuno-biology. Equally important are the innovative experimental systems that have emerged to interrogate molecular mechanisms underlying those effects. This review presents a summary of the current understanding of the role of selenium and selenoproteins in regulating immune cell functions and how dysregulation of these processes may lead to inflammation or immune-related diseases.

Keywords: T cell; antibody; cancer; inflammation; macrophage; selenocysteine.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
A summary of selenium and immune responses.

References

    1. Franke K.W. A New Toxicant Occurring Naturally in Certain Samples of Plant Foodstuffs: I. Results Obtained in Preliminary Feeding Trials: Eight Figures. J. Nutr. 1934;8:597–608. doi: 10.1093/jn/8.5.597.
    1. Schwarz K., Foltz C.M. Selenium as an integral part of factor 3 against dietary necrosis liver degeneration. J. Am. Chem. Soc. 1957;79:3292–3293. doi: 10.1021/ja01569a087.
    1. Roman M., Jitaru P., Barbante C. Selenium biochemistry and its role for human health. Metallomics. 2014;6:25–54. doi: 10.1039/C3MT00185G.
    1. Rayman M.P. Selenium and human health. Lancet. 2012;379:1256–1268. doi: 10.1016/S0140-6736(11)61452-9.
    1. Chun O.K., Floegel A., Chung S.J., Chung C.E., Song W.O., Koo S.I. Estimation of antioxidant intakes from diet and supplements in U.S. adults. J. Nutr. 2010;140:317–324. doi: 10.3945/jn.109.114413.
    1. Kipp A.P., Strohm D., Brigelius-Flohe R., Schomburg L., Bechthold A., Leschik-Bonnet E., Heseker H., German Nutrition Society (DGE) Revised reference values for selenium intake. J. Trace Elem. Med. Biol. 2015;32:195–199. doi: 10.1016/j.jtemb.2015.07.005.
    1. Institute of Medicine, Food and Nutrition Board Staff . Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academy Press; Washington, DC, USA: 2000.
    1. Dietary reference values for food energy and nutrients for the United Kingdom Report of the Panel on Dietary Reference Values of the Committee on Medical Aspects of Food Policy. Rep. Health Soc. Subj. (Lond.) 1991;41:1–210.
    1. Sunde R.A. Selenium. In: Ross A.C., Caballero B., Cousins R.J., Tucker K.L., Ziegler T.R., editors. Modern Nutrition in Health and Disease. 11th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2012. pp. 225–237.
    1. Ashton K., Hooper L., Harvey L.J., Hurst R., Casgrain A., Fairweather-Tait S.J. Methods of assessment of selenium status in humans: A systematic review. Am. J. Clin. Nutr. 2009;89:2025S–2039S. doi: 10.3945/ajcn.2009.27230F.
    1. Combs G.F., Jr. Biomarkers of selenium status. Nutrients. 2015;7:2209–2236. doi: 10.3390/nu7042209.
    1. Stoffaneller R., Morse N.L. A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients. 2015;7:1494–1537. doi: 10.3390/nu7031494.
    1. Finley J.W. Bioavailability of selenium from foods. Nutr. Rev. 2006;64:146–151. doi: 10.1111/j.1753-4887.2006.tb00198.x.
    1. Kassam S., Goenaga-Infante H., Maharaj L., Hiley C.T., Juliger S., Joel S.P. Methylseleninic acid inhibits HDAC activity in diffuse large B-cell lymphoma cell lines. Cancer Chemother. Pharmacol. 2011;68:815–821. doi: 10.1007/s00280-011-1649-1.
    1. Bera S., De Rosa V., Rachidi W., Diamond A.M. Does a role for selenium in DNA damage repair explain apparent controversies in its use in chemoprevention? Mutagenesis. 2013;28:127–134. doi: 10.1093/mutage/ges064.
    1. Ip C., Thompson H.J., Zhu Z., Ganther H.E. In vitro and in vivo studies of methylseleninic acid: Evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res. 2000;60:2882–2886.
    1. Reeves M.A., Hoffmann P.R. The human selenoproteome: Recent insights into functions and regulation. Cell. Mol. Life Sci. 2009;66:2457–2478. doi: 10.1007/s00018-009-0032-4.
    1. Seyedali A., Berry M.J. Nonsense-mediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency. RNA. 2014;20:1248–1256. doi: 10.1261/rna.043463.113.
    1. Lin H.C., Yeh C.W., Chen Y.F., Lee T.T., Hsieh P.Y., Rusnac D.V., Lin S.Y., Elledge S.J., Zheng N., Yen H.S. C-Terminal End-Directed Protein Elimination by CRL2 Ubiquitin Ligases. Mol. Cell. 2018;70:602–613 e603. doi: 10.1016/j.molcel.2018.04.006.
    1. Burk R.F., Hill K.E. Regulation of Selenium Metabolism and Transport. Annu. Rev. Nutr. 2015;35:109–134. doi: 10.1146/annurev-nutr-071714-034250.
    1. Kryukov G.V., Castellano S., Novoselov S.V., Lobanov A.V., Zehtab O., Guigo R., Gladyshev V.N. Characterization of mammalian selenoproteomes. Science. 2003;300:1439–1443. doi: 10.1126/science.1083516.
    1. Lubos E., Loscalzo J., Handy D.E. Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2011;15:1957–1997. doi: 10.1089/ars.2010.3586.
    1. Lei X.G., Cheng W.H., McClung J.P. Metabolic regulation and function of glutathione peroxidase-1. Annu. Rev. Nutr. 2007;27:41–61. doi: 10.1146/annurev.nutr.27.061406.093716.
    1. Brigelius-Flohe R., Kipp A. Glutathione peroxidases in different stages of carcinogenesis. Biochim. Biophys. Acta. 2009;1790:1555–1568. doi: 10.1016/j.bbagen.2009.03.006.
    1. Wingler K., Brigelius-Flohe R. Gastrointestinal glutathione peroxidase. Biofactors. 1999;10:245–249. doi: 10.1002/biof.5520100223.
    1. Koyama H., Omura K., Ejima A., Kasanuma Y., Watanabe C., Satoh H. Separation of selenium-containing proteins in human and mouse plasma using tandem high-performance liquid chromatography columns coupled with inductively coupled plasma-mass spectrometry. Anal. Biochem. 1999;267:84–91. doi: 10.1006/abio.1998.2949.
    1. Chu F.F., Esworthy R.S., Doroshow J.H., Doan K., Liu X.F. Expression of plasma glutathione peroxidase in human liver in addition to kidney, heart, lung, and breast in humans and rodents. Blood. 1992;79:3233–3238.
    1. Conrad M., Schneider M., Seiler A., Bornkamm G.W. Physiological role of phospholipid hydroperoxide glutathione peroxidase in mammals. Biol. Chem. 2007;388:1019–1025. doi: 10.1515/BC.2007.130.
    1. Ingold I., Berndt C., Schmitt S., Doll S., Poschmann G., Buday K., Roveri A., Peng X., Porto Freitas F., Seibt T., et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018;172:409–422 e421. doi: 10.1016/j.cell.2017.11.048.
    1. Brigelius-Flohe R. Glutathione peroxidases and redox-regulated transcription factors. Biol. Chem. 2006;387:1329–1335. doi: 10.1515/BC.2006.166.
    1. Crosley L.K., Meplan C., Nicol F., Rundlof A.K., Arner E.S., Hesketh J.E., Arthur J.R. Differential regulation of expression of cytosolic and mitochondrial thioredoxin reductase in rat liver and kidney. Arch. Biochem. Biophys. 2007;459:178–188. doi: 10.1016/j.abb.2006.12.029.
    1. Conrad M., Jakupoglu C., Moreno S.G., Lippl S., Banjac A., Schneider M., Beck H., Hatzopoulos A.K., Just U., Sinowatz F., et al. Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol. Cell. Biol. 2004;24:9414–9423. doi: 10.1128/MCB.24.21.9414-9423.2004.
    1. Su D., Novoselov S.V., Sun Q.A., Moustafa M.E., Zhou Y., Oko R., Hatfield D.L., Gladyshev V.N. Mammalian selenoprotein thioredoxin-glutathione reductase. Roles in disulfide bond formation and sperm maturation. J. Biol. Chem. 2005;280:26491–26498. doi: 10.1074/jbc.M503638200.
    1. Darras V.M., Van Herck S.L. Iodothyronine deiodinase structure and function: From ascidians to humans. J. Endocrinol. 2012;215:189–206. doi: 10.1530/JOE-12-0204.
    1. Lee B.C., Lee S.G., Choo M.K., Kim J.H., Lee H.M., Kim S., Fomenko D.E., Kim H.Y., Park J.M., Gladyshev V.N. Selenoprotein MsrB1 promotes anti-inflammatory cytokine gene expression in macrophages and controls immune response in vivo. Sci. Rep. 2017;7:5119. doi: 10.1038/s41598-017-05230-2.
    1. Fomenko D.E., Novoselov S.V., Natarajan S.K., Lee B.C., Koc A., Carlson B.A., Lee T.H., Kim H.Y., Hatfield D.L., Gladyshev V.N. MsrB1 (methionine-R-sulfoxide reductase 1) knock-out mice: Roles of MsrB1 in redox regulation and identification of a novel selenoprotein form. J. Biol. Chem. 2009;284:5986–5993. doi: 10.1074/jbc.M805770200.
    1. Labunskyy V.M., Hatfield D.L., Gladyshev V.N. The Sep15 protein family: Roles in disulfide bond formation and quality control in the endoplasmic reticulum. IUBMB Life. 2007;59:1–5. doi: 10.1080/15216540601126694.
    1. Yim S.H., Everley R.A., Schildberg F.A., Lee S.G., Orsi A., Barbati Z.R., Karatepe K., Fomenko D.E., Tsuji P.A., Luo H.R., et al. Role of Selenof as a Gatekeeper of Secreted Disulfide-Rich Glycoproteins. Cell. Rep. 2018;23:1387–1398. doi: 10.1016/j.celrep.2018.04.009.
    1. Panee J., Stoytcheva Z.R., Liu W., Berry M.J. Selenoprotein H is a redox-sensing high mobility group family DNA-binding protein that up-regulates genes involved in glutathione synthesis and phase II detoxification. J. Biol. Chem. 2007;282:23759–23765. doi: 10.1074/jbc.M702267200.
    1. Novoselov S.V., Kryukov G.V., Xu X.M., Carlson B.A., Hatfield D.L., Gladyshev V.N. Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J. Biol. Chem. 2007;282:11960–11968. doi: 10.1074/jbc.M701605200.
    1. Horibata Y., Hirabayashi Y. Identification and characterization of human ethanolaminephosphotransferase1. J. Lipid Res. 2007;48:503–508. doi: 10.1194/jlr.C600019-JLR200.
    1. Verma S., Hoffmann F.W., Kumar M., Huang Z., Roe K., Nguyen-Wu E., Hashimoto A.S., Hoffmann P.R. Selenoprotein K knockout mice exhibit deficient calcium flux in immune cells and impaired immune responses. J. Immunol. 2011;186:2127–2137. doi: 10.4049/jimmunol.1002878.
    1. Fredericks G.J., Hoffmann P.R. Selenoprotein K and protein palmitoylation. Antioxid. Redox Signal. 2015;23:854–862. doi: 10.1089/ars.2015.6375.
    1. Pitts M.W., Reeves M.A., Hashimoto A.C., Ogawa A., Kremer P., Seale L.A., Berry M.J. Deletion of selenoprotein M leads to obesity without cognitive deficits. J. Biol. Chem. 2013;288:26121–26134. doi: 10.1074/jbc.M113.471235.
    1. Lescure A., Rederstorff M., Krol A., Guicheney P., Allamand V. Selenoprotein function and muscle disease. Biochim. Biophys. Acta. 2009;1790:1569–1574. doi: 10.1016/j.bbagen.2009.03.002.
    1. Castets P., Lescure A., Guicheney P., Allamand V. Selenoprotein N in skeletal muscle: From diseases to function. J. Mol. Med. (Berl.) 2012;90:1095–1107. doi: 10.1007/s00109-012-0896-x.
    1. Han S.J., Lee B.C., Yim S.H., Gladyshev V.N., Lee S.R. Characterization of mammalian selenoprotein o: A redox-active mitochondrial protein. PLoS ONE. 2014;9:e95518. doi: 10.1371/journal.pone.0095518.
    1. Burk R.F., Hill K.E. Selenoprotein P-expression, functions, and roles in mammals. Biochim. Biophys. Acta. 2009;1790:1441–1447. doi: 10.1016/j.bbagen.2009.03.026.
    1. Ye Y., Shibata Y., Yun C., Ron D., Rapoport T.A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature. 2004;429:841–847. doi: 10.1038/nature02656.
    1. Turanov A.A., Shchedrina V.A., Everley R.A., Lobanov A.V., Yim S.H., Marino S.M., Gygi S.P., Hatfield D.L., Gladyshev V.N. Selenoprotein S is involved in maintenance and transport of multiprotein complexes. Biochem. J. 2014;462:555–565. doi: 10.1042/BJ20140076.
    1. Boukhzar L., Hamieh A., Cartier D., Tanguy Y., Alsharif I., Castex M., Arabo A., El Hajji S., Bonnet J.J., Errami M., et al. Selenoprotein T Exerts an Essential Oxidoreductase Activity That Protects Dopaminergic Neurons in Mouse Models of Parkinson’s Disease. Antioxid. Redox Signal. 2016;24:557–574. doi: 10.1089/ars.2015.6478.
    1. Jeon Y.H., Park Y.H., Lee J.H., Hong J.H., Kim I.Y. Selenoprotein W enhances skeletal muscle differentiation by inhibiting TAZ binding to 14-3-3 protein. Biochim. Biophys. Acta. 2014;1843:1356–1364. doi: 10.1016/j.bbamcr.2014.04.002.
    1. Xu X.M., Carlson B.A., Irons R., Mix H., Zhong N., Gladyshev V.N., Hatfield D.L. Selenophosphate synthetase 2 is essential for selenoprotein biosynthesis. Biochem. J. 2007;404:115–120. doi: 10.1042/BJ20070165.
    1. Bosl M.R., Takaku K., Oshima M., Nishimura S., Taketo M.M. Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp) Proc. Natl. Acad. Sci. USA. 1997;94:5531–5534. doi: 10.1073/pnas.94.11.5531.
    1. Yant L.J., Ran Q., Rao L., Van Remmen H., Shibatani T., Belter J.G., Motta L., Richardson A., Prolla T.A. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic. Biol. Med. 2003;34:496–502. doi: 10.1016/S0891-5849(02)01360-6.
    1. Jakupoglu C., Przemeck G.K., Schneider M., Moreno S.G., Mayr N., Hatzopoulos A.K., de Angelis M.H., Wurst W., Bornkamm G.W., Brielmeier M., et al. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol. Cell. Biol. 2005;25:1980–1988. doi: 10.1128/MCB.25.5.1980-1988.2005.
    1. Ferreiro A., Quijano-Roy S., Pichereau C., Moghadaszadeh B., Goemans N., Bonnemann C., Jungbluth H., Straub V., Villanova M., Leroy J.P., et al. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: Reassessing the nosology of early-onset myopathies. Am. J. Hum. Genet. 2002;71:739–749. doi: 10.1086/342719.
    1. Moghadaszadeh B., Petit N., Jaillard C., Brockington M., Quijano Roy S., Merlini L., Romero N., Estournet B., Desguerre I., Chaigne D., et al. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat. Genet. 2001;29:17–18. doi: 10.1038/ng713.
    1. Jurynec M.J., Xia R., Mackrill J.J., Gunther D., Crawford T., Flanigan K.M., Abramson J.J., Howard M.T., Grunwald D.J. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc. Natl. Acad. Sci. USA. 2008;105:12485–12490. doi: 10.1073/pnas.0806015105.
    1. Hornberger T.A., McLoughlin T.J., Leszczynski J.K., Armstrong D.D., Jameson R.R., Bowen P.E., Hwang E.S., Hou H., Moustafa M.E., Carlson B.A., et al. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth. J. Nutr. 2003;133:3091–3097. doi: 10.1093/jn/133.10.3091.
    1. Hernandez A., St Germain D.L. Thyroid hormone deiodinases: Physiology and clinical disorders. Curr. Opin. Pediatr. 2003;15:416–420. doi: 10.1097/00008480-200308000-00011.
    1. Kato T., Read R., Rozga J., Burk R.F. Evidence for intestinal release of absorbed selenium in a form with high hepatic extraction. Am. J. Physiol. 1992;262:G854–G858. doi: 10.1152/ajpgi.1992.262.5.G854.
    1. Hill K.E., Zhou J., McMahan W.J., Motley A.K., Atkins J.F., Gesteland R.F., Burk R.F. Deletion of selenoprotein P alters distribution of selenium in the mouse. J. Biol. Chem. 2003;278:13640–13646. doi: 10.1074/jbc.M300755200.
    1. Schomburg L., Schweizer U., Holtmann B., Flohe L., Sendtner M., Kohrle J. Gene disruption discloses role of selenoprotein P in selenium delivery to target tissues. Biochem. J. 2003;370:397–402. doi: 10.1042/bj20021853.
    1. Behne D., Hilmert H., Scheid S., Gessner H., Elger W. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim. Biophys. Acta. 1988;966:12–21. doi: 10.1016/0304-4165(88)90123-7.
    1. Valentine W.M., Hill K.E., Austin L.M., Valentine H.L., Goldowitz D., Burk R.F. Brainstem axonal degeneration in mice with deletion of selenoprotein p. Toxicol. Pathol. 2005;33:570–576. doi: 10.1080/01926230500243045.
    1. Hill K.E., Zhou J., McMahan W.J., Motley A.K., Burk R.F. Neurological dysfunction occurs in mice with targeted deletion of the selenoprotein P gene. J. Nutr. 2004;134:157–161. doi: 10.1093/jn/134.1.157.
    1. Schweizer U., Michaelis M., Kohrle J., Schomburg L. Efficient selenium transfer from mother to offspring in selenoprotein-P-deficient mice enables dose-dependent rescue of phenotypes associated with selenium deficiency. Biochem. J. 2004;378:21–26. doi: 10.1042/bj20031795.
    1. Nonn L., Williams R.R., Erickson R.P., Powis G. The absence of mitochondrial thioredoxin 2 causes massive apoptosis, exencephaly, and early embryonic lethality in homozygous mice. Mol. Cell. Biol. 2003;23:916–922. doi: 10.1128/MCB.23.3.916-922.2003.
    1. Flohe L., Gunzler W.A., Schock H.H. Glutathione peroxidase: A selenoenzyme. FEBS Lett. 1973;32:132–134. doi: 10.1016/0014-5793(73)80755-0.
    1. Rotruck J.T., Pope A.L., Ganther H.E., Swanson A.B., Hafeman D.G., Hoekstra W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science. 1973;179:588–590. doi: 10.1126/science.179.4073.588.
    1. Conrad M. Transgenic mouse models for the vital selenoenzymes cytosolic thioredoxin reductase, mitochondrial thioredoxin reductase and glutathione peroxidase 4. Biochim. Biophys. Acta. 2009;1790:1575–1585. doi: 10.1016/j.bbagen.2009.05.001.
    1. Schomburg L., Schweizer U. Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim. Biophys. Acta. 2009;1790:1453–1462. doi: 10.1016/j.bbagen.2009.03.015.
    1. Burk R.F., Hill K.E., Awad J.A., Morrow J.D., Lyons P.R. Liver and kidney necrosis in selenium-deficient rats depleted of glutathione. Lab. Investig. 1995;72:723–730.
    1. Ge K., Xue A., Bai J., Wang S. Keshan disease-an endemic cardiomyopathy in China. Virchows Arch. A Pathol. Anat. Histopathol. 1983;401:1–15. doi: 10.1007/BF00644785.
    1. Beck M.A., Levander O.A., Handy J. Selenium deficiency and viral infection. J. Nutr. 2003;133:1463S–1467S. doi: 10.1093/jn/133.5.1463S.
    1. Sokoloff L. Acquired chondronecrosis. Ann. Rheum. Dis. 1990;49:262–264. doi: 10.1136/ard.49.4.262.
    1. Wang S.J., Guo X., Zuo H., Zhang Y.G., Xu P., Ping Z.G., Zhang Z., Geng D. Chondrocyte apoptosis and expression of Bcl-2, Bax, Fas, and iNOS in articular cartilage in patients with Kashin-Beck disease. J. Rheumatol. 2006;33:615–619.
    1. Wang S.J., Guo X., Ren F.L., Zhang Y.G., Zhang Z.T., Zhang F.J., Geng D. Comparison of apoptosis of articular chondrocytes in the pathogenesis of Kashin-beck disease and primary osteoarthritis. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2006;28:267–270. (In Chinese)
    1. Wang Y., Guo X., Zhang Z.T., Wang M., Wang S.J. Expression of Caspase-8 and Bcl-2 in the cartilage loose bodies in patients with Kashin-Beck disease. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31:1314–1317. (In Chinese)
    1. Yao Y., Pei F., Kang P. Selenium, iodine, and the relation with Kashin-Beck disease. Nutrition. 2011;27:1095–1100. doi: 10.1016/j.nut.2011.03.002.
    1. Moreno-Reyes R., Suetens C., Mathieu F., Begaux F., Zhu D., Rivera M.T., Boelaert M., Neve J., Perlmutter N., Vanderpas J. Kashin-Beck osteoarthropathy in rural Tibet in relation to selenium and iodine status. N. Engl. J. Med. 1998;339:1112–1120. doi: 10.1056/NEJM199810153391604.
    1. Barrett C.W., Reddy V.K., Short S.P., Motley A.K., Lintel M.K., Bradley A.M., Freeman T., Vallance J., Ning W., Parang B., et al. Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage. J. Clin. Investig. 2015;125:2646–2660. doi: 10.1172/JCI76099.
    1. Hamid M., Abdulrahim Y., Liu D., Qian G., Khan A., Huang K. The Hepatoprotective Effect of Selenium-Enriched Yeast and Gum Arabic Combination on Carbon Tetrachloride-Induced Chronic Liver Injury in Rats. J. Food Sci. 2018;83:525–534. doi: 10.1111/1750-3841.14030.
    1. Barrett C.W., Short S.P., Williams C.S. Selenoproteins and oxidative stress-induced inflammatory tumorigenesis in the gut. Cell. Mol. Life Sci. 2017;74:607–616. doi: 10.1007/s00018-016-2339-2.
    1. Nettleford S.K., Prabhu K.S. Selenium and Selenoproteins in Gut Inflammation-A Review. Antioxidants (Basel) 2018;7:36. doi: 10.3390/antiox7030036.
    1. Zhang Z., Gao X., Cao Y., Jiang H., Wang T., Song X., Guo M., Zhang N. Selenium Deficiency Facilitates Inflammation Through the Regulation of TLR4 and TLR4-Related Signaling Pathways in the Mice Uterus. Inflammation. 2015;38:1347–1356. doi: 10.1007/s10753-014-0106-9.
    1. Gao X., Zhang Z., Li Y., Shen P., Hu X., Cao Y., Zhang N. Selenium Deficiency Facilitates Inflammation Following S. aureus Infection by Regulating TLR2-Related Pathways in the Mouse Mammary Gland. Biol. Trace Elem. Res. 2016;172:449–457. doi: 10.1007/s12011-015-0614-y.
    1. Hoffmann P.R., Jourdan-Le Saux C., Hoffmann F.W., Chang P.S., Bollt O., He Q., Tam E.K., Berry M.J. A role for dietary selenium and selenoproteins in allergic airway inflammation. J. Immunol. 2007;179:3258–3267. doi: 10.4049/jimmunol.179.5.3258.
    1. Tsuji P.A., Carlson B.A., Anderson C.B., Seifried H.E., Hatfield D.L., Howard M.T. Dietary Selenium Levels Affect Selenoprotein Expression and Support the Interferon-gamma and IL-6 Immune Response Pathways in Mice. Nutrients. 2015;7:6529–6549. doi: 10.3390/nu7085297.
    1. Huang Z., Rose A.H., Hoffmann P.R. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 2012;16:705–743. doi: 10.1089/ars.2011.4145.
    1. Bentley-Hewitt K.L., Chen R.K., Lill R.E., Hedderley D.I., Herath T.D., Matich A.J., McKenzie M.J. Consumption of selenium-enriched broccoli increases cytokine production in human peripheral blood mononuclear cells stimulated ex vivo, a preliminary human intervention study. Mol. Nutr. Food Res. 2014;58:2350–2357. doi: 10.1002/mnfr.201400438.
    1. Broome C.S., McArdle F., Kyle J.A., Andrews F., Lowe N.M., Hart C.A., Arthur J.R., Jackson M.J. An increase in selenium intake improves immune function and poliovirus handling in adults with marginal selenium status. Am. J. Clin. Nutr. 2004;80:154–162. doi: 10.1093/ajcn/80.1.154.
    1. Ivory K., Prieto E., Spinks C., Armah C.N., Goldson A.J., Dainty J.R., Nicoletti C. Selenium supplementation has beneficial and detrimental effects on immunity to influenza vaccine in older adults. Clin. Nutr. 2017;36:407–415. doi: 10.1016/j.clnu.2015.12.003.
    1. Meplan C., Johnson I.T., Polley A.C., Cockell S., Bradburn D.M., Commane D.M., Arasaradnam R.P., Mulholland F., Zupanic A., Mathers J.C., et al. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies. FASEB J. 2016;30:2812–2825. doi: 10.1096/fj.201600251R.
    1. Mahmoodpoor A., Hamishehkar H., Shadvar K., Ostadi Z., Sanaie S., Saghaleini S.H., Nader N.D. The Effect of Intravenous Selenium on Oxidative Stress in Critically Ill Patients with Acute Respiratory Distress Syndrome. Immunol. Investig. 2018:1–13. doi: 10.1080/08820139.2018.1496098.
    1. Geisberger R., Kiermayer C., Homig C., Conrad M., Schmidt J., Zimber-Strobl U., Brielmeier M. B- and T-cell-specific inactivation of thioredoxin reductase 2 does not impair lymphocyte development and maintenance. Biol. Chem. 2007;388:1083–1090. doi: 10.1515/BC.2007.131.
    1. Shrimali R.K., Irons R.D., Carlson B.A., Sano Y., Gladyshev V.N., Park J.M., Hatfield D.L. Selenoproteins mediate T cell immunity through an antioxidant mechanism. J. Biol. Chem. 2008;283:20181–20185. doi: 10.1074/jbc.M802559200.
    1. Wichman J., Winther K.H., Bonnema S.J., Hegedus L. Selenium Supplementation Significantly Reduces Thyroid Autoantibody Levels in Patients with Chronic Autoimmune Thyroiditis: A Systematic Review and Meta-Analysis. Thyroid. 2016;26:1681–1692. doi: 10.1089/thy.2016.0256.
    1. McLachlan S.M., Aliesky H., Banuelos B., Hee S.S.Q., Rapoport B. Variable Effects of Dietary Selenium in Mice That Spontaneously Develop a Spectrum of Thyroid Autoantibodies. Endocrinology. 2017;158:3754–3764. doi: 10.1210/en.2017-00275.
    1. Hoffmann F.W., Hashimoto A.C., Shafer L.A., Dow S., Berry M.J., Hoffmann P.R. Dietary selenium modulates activation and differentiation of CD4+ T cells in mice through a mechanism involving cellular free thiols. J. Nutr. 2010;140:1155–1161. doi: 10.3945/jn.109.120725.
    1. Mahdavi M., Mavandadnejad F., Yazdi M.H., Faghfuri E., Hashemi H., Homayouni-Oreh S., Farhoudi R., Shahverdi A.R. Oral administration of synthetic selenium nanoparticles induced robust Th1 cytokine pattern after HBs antigen vaccination in mouse model. J. Infect. Public Health. 2017;10:102–109. doi: 10.1016/j.jiph.2016.02.006.
    1. Roy M., Kiremidjian-Schumacher L., Wishe H.I., Cohen M.W., Stotzky G. Supplementation with selenium restores age-related decline in immune cell function. Proc. Soc. Exp. Biol. Med. 1995;209:369–375. doi: 10.3181/00379727-209-43909.
    1. Hawkes W.C., Kelley D.S., Taylor P.C. The effects of dietary selenium on the immune system in healthy men. Biol. Trace Elem. Res. 2001;81:189–213. doi: 10.1385/BTER:81:3:189.
    1. Nelson S.M., Lei X., Prabhu K.S. Selenium levels affect the IL-4-induced expression of alternative activation markers in murine macrophages. J. Nutr. 2011;141:1754–1761. doi: 10.3945/jn.111.141176.
    1. Nelson S.M., Shay A.E., James J.L., Carlson B.A., Urban J.F., Jr., Prabhu K.S. Selenoprotein Expression in Macrophages Is Critical for Optimal Clearance of Parasitic Helminth Nippostrongylus brasiliensis. J. Biol. Chem. 2016;291:2787–2798. doi: 10.1074/jbc.M115.684738.
    1. Carlson B.A., Yoo M.H., Shrimali R.K., Irons R., Gladyshev V.N., Hatfield D.L., Park J.M. Role of selenium-containing proteins in T-cell and macrophage function. Proc. Nutr. Soc. 2010;69:300–310. doi: 10.1017/S002966511000176X.
    1. Safir N., Wendel A., Saile R., Chabraoui L. The effect of selenium on immune functions of J774.1 cells. Clin. Chem. Lab. Med. 2003;41:1005–1011. doi: 10.1515/CCLM.2003.154.
    1. Aribi M., Meziane W., Habi S., Boulatika Y., Marchandin H., Aymeric J.L. Macrophage Bactericidal Activities against Staphylococcus aureus Are Enhanced In Vivo by Selenium Supplementation in a Dose-Dependent Manner. PLoS ONE. 2015;10:e0135515. doi: 10.1371/journal.pone.0135515.
    1. Bi C.L., Wang H., Wang Y.J., Sun J., Dong J.S., Meng X., Li J.J. Selenium inhibits Staphylococcus aureus-induced inflammation by suppressing the activation of the NF-kappaB and MAPK signalling pathways in RAW264.7 macrophages. Eur. J. Pharmacol. 2016;780:159–165. doi: 10.1016/j.ejphar.2016.03.044.
    1. Kose S.A., Naziroglu M. Selenium reduces oxidative stress and calcium entry through TRPV1 channels in the neutrophils of patients with polycystic ovary syndrome. Biol. Trace Elem. Res. 2014;158:136–142. doi: 10.1007/s12011-014-9929-3.
    1. Ravaglia G., Forti P., Maioli F., Bastagli L., Facchini A., Mariani E., Savarino L., Sassi S., Cucinotta D., Lenaz G. Effect of micronutrient status on natural killer cell immune function in healthy free-living subjects aged >/=90 y. Am. J. Clin. Nutr. 2000;71:590–598. doi: 10.1093/ajcn/71.2.590.
    1. Kiremidjian-Schumacher L., Roy M., Wishe H.I., Cohen M.W., Stotzky G. Supplementation with selenium augments the functions of natural killer and lymphokine-activated killer cells. Biol. Trace Elem. Res. 1996;52:227–239. doi: 10.1007/BF02789164.
    1. Enqvist M., Nilsonne G., Hammarfjord O., Wallin R.P., Bjorkstrom N.K., Bjornstedt M., Hjerpe A., Ljunggren H.G., Dobra K., Malmberg K.J., et al. Selenite induces posttranscriptional blockade of HLA-E expression and sensitizes tumor cells to CD94/NKG2A-positive NK cells. J. Immunol. 2011;187:3546–3554. doi: 10.4049/jimmunol.1100610.
    1. Alvarado C., Alvarez P., Jimenez L., De la Fuente M. Improvement of leukocyte functions in young prematurely aging mice after a 5-week ingestion of a diet supplemented with biscuits enriched in antioxidants. Antioxid. Redox Signal. 2005;7:1203–1210. doi: 10.1089/ars.2005.7.1203.
    1. Wang C., Wang H., Luo J., Hu Y., Wei L., Duan M., He H. Selenium deficiency impairs host innate immune response and induces susceptibility to Listeria monocytogenes infection. BMC Immunol. 2009;10:55. doi: 10.1186/1471-2172-10-55.
    1. De Freitas M.R.B., da Costa C.M.B., Pereira L.M., do Prado J.C.J., Sala M.A., Abrahao A.A.C. The treatment with selenium increases placental parasitismin pregnant Wistar rats infected with the Y strain of Trypanosoma cruzi. Immunobiology. 2018 doi: 10.1016/j.imbio.2018.06.001.
    1. Nelson S.M., Shay A.E., James J.L., Carlson B.A., Urban J.F., Jr., Prabhu K.S. Selenoprotein Expression in Macrophages Is Critical for Optimal Clearance of Parasitic Helminth Nippostrongylus brasiliensis. J. Biol. Chem. 2013;291:2787–2798. doi: 10.1074/jbc.M115.684738.
    1. Smith A.D., Cheung L., Beshah E., Shea-Donohue T., Urban J.F., Jr. Selenium status alters the immune response and expulsion of adult Heligmosomoides bakeri worms in mice. Infect. Immun. 2013;81:2546–2553. doi: 10.1128/IAI.01047-12.
    1. Wiehe L., Cremer M., Wisniewska M., Becker N.P., Rijntjes E., Martitz J., Hybsier S., Renko K., Buhrer C., Schomburg L. Selenium status in neonates with connatal infection. Br. J. Nutr. 2016;116:504–513. doi: 10.1017/S0007114516002208.
    1. Liu Y., Qiu C., Li W., Mu W., Li C., Guo M. Selenium Plays a Protective Role in Staphylococcus aureus-Induced Endometritis in the Uterine Tissue of Rats. Biol. Trace Elem. Res. 2016;173:345–353. doi: 10.1007/s12011-016-0659-6.
    1. Varsi K., Bolann B., Torsvik I., Rosvold Eik T.C., Hol P.J., Bjorke-Monsen A.L. Impact of Maternal Selenium Status on Infant Outcome during the First 6 Months of Life. Nutrients. 2017;9:486. doi: 10.3390/nu9050486.
    1. Yoshizawa S., Bock A. The many levels of control on bacterial selenoprotein synthesis. Biochim. Biophys. Acta. 2009;1790:1404–1414. doi: 10.1016/j.bbagen.2009.03.010.
    1. Grobler L., Nagpal S., Sudarsanam T.D., Sinclair D. Nutritional supplements for people being treated for active tuberculosis. Cochrane Database Syst. Rev. 2016 doi: 10.1002/14651858.CD006086.pub4.
    1. Ramakrishnan K., Shenbagarathai R., Kavitha K., Thirumalaikolundusubramanian P., Rathinasabapati R. Selenium levels in persons with HIV/tuberculosis in India, Madurai City. Clin. Lab. 2012;58:165–168.
    1. Eick F., Maleta K., Govasmark E., Duttaroy A.K., Bjune A.G. Food intake of selenium and sulphur amino acids in tuberculosis patients and healthy adults in Malawi. Int. J. Tuberc. Lung Dis. 2009;13:1313–1315.
    1. Seyedrezazadeh E., Ostadrahimi A., Mahboob S., Assadi Y., Ghaemmagami J., Pourmogaddam M. Effect of vitamin E and selenium supplementation on oxidative stress status in pulmonary tuberculosis patients. Respirology. 2008;13:294–298. doi: 10.1111/j.1440-1843.2007.01200.x.
    1. Sargazi A., Gharebagh R.A., Sargazi A., Aali H., Oskoee H.O., Sepehri Z. Role of essential trace elements in tuberculosis infection: A review article. Indian J. Tuberc. 2017;64:246–251. doi: 10.1016/j.ijtb.2017.03.003.
    1. Jaquess P.A., Smalley D.L., Duckworth J.K. Enhanced growth of Mycobacterium tuberculosis in the presence of selenium. Am. J. Clin. Pathol. 1981;75:209–210. doi: 10.1093/ajcp/75.2.209.
    1. Steinbrenner H., Al-Quraishy S., Dkhil M.A., Wunderlich F., Sies H. Dietary selenium in adjuvant therapy of viral and bacterial infections. Adv. Nutr. 2015;6:73–82. doi: 10.3945/an.114.007575.
    1. Puertollano M.A., Puertollano E., de Cienfuegos G.A., de Pablo M.A. Dietary antioxidants: Immunity and host defense. Curr. Top. Med. Chem. 2011;11:1752–1766. doi: 10.2174/156802611796235107.
    1. Ko W.S., Guo C.H., Yeh M.S., Lin L.Y., Hsu G.S., Chen P.C., Luo M.C., Lin C.Y. Blood micronutrient, oxidative stress, and viral load in patients with chronic hepatitis C. World J. Gastroenterol. 2005;11:4697–4702. doi: 10.3748/wjg.v11.i30.4697.
    1. Beck M.A. Selenium and host defence towards viruses. Proc. Nutr. Soc. 1999;58:707–711. doi: 10.1017/S0029665199000920.
    1. Jackson M.J., Dillon S.A., Broome C.S., McArdle A., Hart C.A., McArdle F. Are there functional consequences of a reduction in selenium intake in UK subjects? Proc. Nutr. Soc. 2004;63:513–517. doi: 10.1079/PNS2004382.
    1. Girodon F., Galan P., Monget A.L., Boutron-Ruault M.C., Brunet-Lecomte P., Preziosi P., Arnaud J., Manuguerra J.C., Herchberg S. Impact of trace elements and vitamin supplementation on immunity and infections in institutionalized elderly patients: A randomized controlled trial. MIN. VIT. AOX. geriatric network. Arch. Intern. Med. 1999;159:748–754. doi: 10.1001/archinte.159.7.748.
    1. Cohen M.S., Hellmann N., Levy J.A., DeCock K., Lange J. The spread, treatment, and prevention of HIV-1: Evolution of a global pandemic. J. Clin. Investig. 2008;118:1244–1254. doi: 10.1172/JCI34706.
    1. Shivakoti R., Christian P., Yang W.T., Gupte N., Mwelase N., Kanyama C., Pillay S., Samaneka W., Santos B., Poongulali S., et al. Prevalence and risk factors of micronutrient deficiencies pre- and post-antiretroviral therapy (ART) among a diverse multicountry cohort of HIV-infected adults. Clin. Nutr. 2016;35:183–189. doi: 10.1016/j.clnu.2015.02.002.
    1. Anyabolu H.C., Adejuyigbe E.A., Adeodu O.O. Serum Micronutrient Status of Haart-Naive, HIV Infected Children in South Western Nigeria: A Case Controlled Study. AIDS Res. Treat. 2014;2014:351043. doi: 10.1155/2014/351043.
    1. Shivakoti R., Ewald E.R., Gupte N., Yang W.T., Kanyama C., Cardoso S.W., Santos B., Supparatpinyo K., Badal-Faesen S., Lama J.R., et al. Effect of baseline micronutrient and inflammation status on CD4 recovery post-cART initiation in the multinational PEARLS trial. Clin. Nutr. 2018 doi: 10.1016/j.clnu.2018.05.014.
    1. Dworkin B.M. Selenium deficiency in HIV infection and the acquired immunodeficiency syndrome (AIDS) Chem. Biol. Interact. 1994;91:181–186. doi: 10.1016/0009-2797(94)90038-8.
    1. Stone C.A., Kawai K., Kupka R., Fawzi W.W. Role of selenium in HIV infection. Nutr. Rev. 2010;68:671–681. doi: 10.1111/j.1753-4887.2010.00337.x.
    1. Combs G.F., Jr., Watts J.C., Jackson M.I., Johnson L.K., Zeng H., Scheett A.J., Uthus E.O., Schomburg L., Hoeg A., Hoefig C.S., et al. Determinants of selenium status in healthy adults. Nutr. J. 2011;10:75. doi: 10.1186/1475-2891-10-75.
    1. Irlam J.H., Siegfried N., Visser M.E., Rollins N.C. Micronutrient supplementation for children with HIV infection. Cochrane Database Syst. Rev. 2013 doi: 10.1002/14651858.CD010666.
    1. Hileman C.O., Dirajlal-Fargo S., Lam S.K., Kumar J., Lacher C., Combs G.F., Jr., McComsey G.A. Plasma Selenium Concentrations Are Sufficient and Associated with Protease Inhibitor Use in Treated HIV-Infected Adults. J. Nutr. 2015;145:2293–2299. doi: 10.3945/jn.115.214577.
    1. Akinboro A.O., Onayemi O., Ayodele O.E., Mejiuni A.D., Atiba A.S. The impacts of first line highly active antiretroviral therapy on serum selenium, CD4 count and body mass index: A cross sectional and short prospective study. Pan. Afr. Med. J. 2013;15:97. doi: 10.11604/pamj.2013.15.97.2524.
    1. Flax V.L., Adair L.S., Allen L.H., Shahab-Ferdows S., Hampel D., Chasela C.S., Tegha G., Daza E.J., Corbett A., Davis N.L., et al. Plasma Micronutrient Concentrations Are Altered by Antiretroviral Therapy and Lipid-Based Nutrient Supplements in Lactating HIV-Infected Malawian Women. J. Nutr. 2015;145:1950–1957.
    1. Baum M.K., Shor-Posner G. Micronutrient status in relationship to mortality in HIV-1 disease. Nutr. Rev. 1998;56:S135–S139. doi: 10.1111/j.1753-4887.1998.tb01631.x.
    1. Kamwesiga J., Mutabazi V., Kayumba J., Tayari J.C., Uwimbabazi J.C., Batanage G., Uwera G., Baziruwiha M., Ntizimira C., Murebwayire A., et al. Effect of selenium supplementation on CD4+ T-cell recovery, viral suppression and morbidity of HIV-infected patients in Rwanda: A randomized controlled trial. AIDS. 2015;29:1045–1052. doi: 10.1097/QAD.0000000000000673.
    1. Sappey C., Legrand-Poels S., Best-Belpomme M., Favier A., Rentier B., Piette J. Stimulation of glutathione peroxidase activity decreases HIV type 1 activation after oxidative stress. AIDS Res. Hum. Retroviruses. 1994;10:1451–1461. doi: 10.1089/aid.1994.10.1451.
    1. Gupta S., Narang R., Krishnaswami K., Yadav S. Plasma selenium level in cancer patients. Indian J. Cancer. 1994;31:192–197.
    1. Duffield-Lillico A.J., Reid M.E., Turnbull B.W., Combs G.F., Jr., Slate E.H., Fischbach L.A., Marshall J.R., Clark L.C. Baseline characteristics and the effect of selenium supplementation on cancer incidence in a randomized clinical trial: A summary report of the Nutritional Prevention of Cancer Trial. Cancer Epidemiol. Biomarkers Prev. 2002;11:630–639.
    1. Li H., Stampfer M.J., Giovannucci E.L., Morris J.S., Willett W.C., Gaziano J.M., Ma J. A prospective study of plasma selenium levels and prostate cancer risk. J. Natl. Cancer Inst. 2004;96:696–703. doi: 10.1093/jnci/djh125.
    1. Overvad K., Wang D.Y., Olsen J., Allen D.S., Thorling E.B., Bulbrook R.D., Hayward J.L. Selenium in human mammary carcinogenesis: A case-cohort study. Eur. J. Cancer. 1991;27:900–902. doi: 10.1016/0277-5379(91)90143-2.
    1. Mannisto S., Alfthan G., Virtanen M., Kataja V., Uusitupa M., Pietinen P. Toenail selenium and breast cancer-a case-control study in Finland. Eur. J. Clin. Nutr. 2000;54:98–103. doi: 10.1038/sj.ejcn.1600902.
    1. Hardell L., Danell M., Angqvist C.A., Marklund S.L., Fredriksson M., Zakari A.L., Kjellgren A. Levels of selenium in plasma and glutathione peroxidase in erythrocytes and the risk of breast cancer. A case-control study. Biol. Trace Elem. Res. 1993;36:99–108. doi: 10.1007/BF02783168.
    1. Hunter D.J., Morris J.S., Stampfer M.J., Colditz G.A., Speizer F.E., Willett W.C. A prospective study of selenium status and breast cancer risk. JAMA. 1990;264:1128–1131. doi: 10.1001/jama.1990.03450090064026.
    1. Kok D.E., Kiemeney L.A., Verhaegh G.W., Schalken J.A., van Lin E.N., Sedelaar J.P., Witjes J.A., Hulsbergen-van de Kaa C.A., van ‘t Veer P., Kampman E., et al. A short-term intervention with selenium affects expression of genes implicated in the epithelial-to-mesenchymal transition in the prostate. Oncotarget. 2017;8:10565–10579. doi: 10.18632/oncotarget.14551.
    1. Radhakrishnan N., Dinand V., Rao S., Gupta P., Toteja G.S., Kalra M., Yadav S.P., Sachdeva A. Antioxidant levels at diagnosis in childhood acute lymphoblastic leukemia. Indian J. Pediatr. 2013;80:292–296. doi: 10.1007/s12098-012-0892-8.
    1. Masri D.S. Microquantity for macroquality: Case study on the effect of selenium on chronic neutropenia. J. Pediatr. Hematol. Oncol. 2011;33:e361–e362. doi: 10.1097/MPH.0b013e31822d4d39.
    1. Rocha K.C., Vieira M.L., Beltrame R.L., Cartum J., Alves S.I., Azzalis L.A., Junqueira V.B., Pereira E.C., Fonseca F.L. Impact of Selenium Supplementation in Neutropenia and Immunoglobulin Production in Childhood Cancer Patients. J. Med. Food. 2016;19:560–568. doi: 10.1089/jmf.2015.0145.
    1. Rohr-Udilova N., Bauer E., Timelthaler G., Eferl R., Stolze K., Pinter M., Seif M., Hayden H., Reiberger T., Schulte-Hermann R., et al. Impact of glutathione peroxidase 4 on cell proliferation, angiogenesis and cytokine production in hepatocellular carcinoma. Oncotarget. 2018;9:10054–10068. doi: 10.18632/oncotarget.24300.
    1. Rohr-Udilova N., Sieghart W., Eferl R., Stoiber D., Bjorkhem-Bergman L., Eriksson L.C., Stolze K., Hayden H., Keppler B., Sagmeister S., et al. Antagonistic effects of selenium and lipid peroxides on growth control in early hepatocellular carcinoma. Hepatology. 2012;55:1112–1121. doi: 10.1002/hep.24808.
    1. Ren Y., Poon R.T., Tsui H.T., Chen W.H., Li Z., Lau C., Yu W.C., Fan S.T. Interleukin-8 serum levels in patients with hepatocellular carcinoma: Correlations with clinicopathological features and prognosis. Clin. Cancer Res. 2003;9:5996–6001.
    1. Gautam P.K., Kumar S., Tomar M.S., Singh R.K., Acharya A., Kumar S., Ram B. Selenium nanoparticles induce suppressed function of tumor associated macrophages and inhibit Dalton’s lymphoma proliferation. Biochem. Biophys. Rep. 2017;12:172–184. doi: 10.1016/j.bbrep.2017.09.005.
    1. Diwakar B.T., Korwar A.M., Paulson R.F., Prabhu K.S. The Regulation of Pathways of Inflammation and Resolution in Immune Cells and Cancer Stem Cells by Selenium. Adv. Cancer Res. 2017;136:153–172.
    1. Zhang J., Basher F., Wu J.D. NKG2D Ligands in Tumor Immunity: Two Sides of a Coin. Front. Immunol. 2015;6:97. doi: 10.3389/fimmu.2015.00097.
    1. Hagemann-Jensen M., Uhlenbrock F., Kehlet S., Andresen L., Gabel-Jensen C., Ellgaard L., Gammelgaard B., Skov S. The selenium metabolite methylselenol regulates the expression of ligands that trigger immune activation through the lymphocyte receptor NKG2D. J. Biol. Chem. 2014;289:31576–31590. doi: 10.1074/jbc.M114.591537.
    1. Lennicke C., Rahn J., Bukur J., Hochgrafe F., Wessjohann L.A., Lichtenfels R., Seliger B. Modulation of MHC class I surface expression in B16F10 melanoma cells by methylseleninic acid. Oncoimmunology. 2017;6:e1259049. doi: 10.1080/2162402X.2016.1259049.
    1. Rose A.H., Bertino P., Hoffmann F.W., Gaudino G., Carbone M., Hoffmann P.R. Increasing dietary selenium elevates reducing capacity and ERK activation associated with accelerated progression of select mesothelioma tumors. Am. J. Pathol. 2014;184:1041–1049. doi: 10.1016/j.ajpath.2013.12.008.
    1. Faghfuri E., Yazdi M.H., Mahdavi M., Sepehrizadeh Z., Faramarzi M.A., Mavandadnejad F., Shahverdi A.R. Dose-response relationship study of selenium nanoparticles as an immunostimulatory agent in cancer-bearing mice. Arch. Med. Res. 2015;46:31–37. doi: 10.1016/j.arcmed.2015.01.002.
    1. Wang H., Chan Y.L., Li T.L., Bauer B.A., Hsia S., Wang C.H., Huang J.S., Wang H.M., Yeh K.Y., Huang T.H., et al. Reduction of splenic immunosuppressive cells and enhancement of anti-tumor immunity by synergy of fish oil and selenium yeast. PLoS ONE. 2013;8:e52912. doi: 10.1371/journal.pone.0052912.
    1. Yazdi M.H., Mahdavi M., Varastehmoradi B., Faramarzi M.A., Shahverdi A.R. The immunostimulatory effect of biogenic selenium nanoparticles on the 4T1 breast cancer model: An in vivo study. Biol. Trace Elem. Res. 2012;149:22–28. doi: 10.1007/s12011-012-9402-0.
    1. Kim H.Y. The methionine sulfoxide reduction system: Selenium utilization and methionine sulfoxide reductase enzymes and their functions. Antioxid. Redox Signal. 2013;19:958–969. doi: 10.1089/ars.2012.5081.
    1. Lee B.C., Peterfi Z., Hoffmann F.W., Moore R.E., Kaya A., Avanesov A., Tarrago L., Zhou Y., Weerapana E., Fomenko D.E., et al. MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation. Mol. Cell. 2013;51:397–404. doi: 10.1016/j.molcel.2013.06.019.
    1. Saha S.S., Hashino M., Suzuki J., Uda A., Watanabe K., Shimizu T., Watarai M. Contribution of methionine sulfoxide reductase B (MsrB) to Francisella tularensis infection in mice. FEMS Microbiol. Lett. 2017;364 doi: 10.1093/femsle/fnw260.
    1. Fredericks G.J., Hoffmann F.W., Rose A.H., Osterheld H.J., Hess F.M., Mercier F., Hoffmann P.R. Stable expression and function of the inositol 1,4,5-triphosphate receptor requires palmitoylation by a DHHC6/selenoprotein K complex. Proc. Natl. Acad. Sci. USA. 2014;111:16478–16483. doi: 10.1073/pnas.1417176111.
    1. Fredericks G.J., Hoffmann F.W., Hondal R.J., Rozovsky S., Urschitz J., Hoffmann P.R. Selenoprotein K Increases Efficiency of DHHC6 Catalyzed Protein Palmitoylation by Stabilizing the Acyl-DHHC6 Intermediate. Antioxidants (Basel) 2017;7:4. doi: 10.3390/antiox7010004.
    1. Meiler S., Baumer Y., Huang Z., Hoffmann F.W., Fredericks G.J., Rose A.H., Norton R.L., Hoffmann P.R., Boisvert W.A. Selenoprotein K is required for palmitoylation of CD36 in macrophages: Implications in foam cell formation and atherogenesis. J. Leukoc. Biol. 2013;93:771–780. doi: 10.1189/jlb.1212647.
    1. Norton R.L., Fredericks G.J., Huang Z., Fay J.D., Hoffmann F.W., Hoffmann P.R. Selenoprotein K regulation of palmitoylation and calpain cleavage of ASAP2 is required for efficient FcgammaR-mediated phagocytosis. J. Leukoc. Biol. 2017;101:439–448. doi: 10.1189/jlb.2A0316-156RR.

Source: PubMed

3
Iratkozz fel