ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS)

Manuela Kellner, Satish Noonepalle, Qing Lu, Anup Srivastava, Evgeny Zemskov, Stephen M Black, Manuela Kellner, Satish Noonepalle, Qing Lu, Anup Srivastava, Evgeny Zemskov, Stephen M Black

Abstract

The generation of reactive oxygen species (ROS) plays an important role for the maintenance of cellular processes and functions in the body. However, the excessive generation of oxygen radicals under pathological conditions such as acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) leads to increased endothelial permeability. Within this hallmark of ALI and ARDS, vascular microvessels lose their junctional integrity and show increased myosin contractions that promote the migration of polymorphonuclear leukocytes (PMNs) and the transition of solutes and fluids in the alveolar lumen. These processes all have a redox component, and this chapter focuses on the role played by ROS during the development of ALI/ARDS. We discuss the origins of ROS within the cell, cellular defense mechanisms against oxidative damage, the role of ROS in the development of endothelial permeability, and potential therapies targeted at oxidative stress.

Keywords: Catalase; Cytochrome P450; Glutathione; Lung injury; Mitochondrial respiratory chain; NADPH oxidase; Nitric oxide synthase; Polymorphonuclear leukocytes; Pulmonary endothelial cell; Reactive oxygen species; Superoxide dismutase; Xanthine oxidase.

Figures

Fig. 1
Fig. 1
Dysfunction of microvascular endothelium and alveolar epithelium in ARDS. Polymorphonuclear leukocytes (PMNs) and macrophages infiltrate the inflamed region through the microvascular blood vessels releasing cytotoxic factors such as pro-inflammatory cytokines and ROS. Theese cytokines and ROS contribute to the endothelial and epithelial dysfunction resulting in leakage of fluids from circulation into the interstitial space and alveoli. This results in pulmonary edema and impaired gas exchange. Sources of inflammation range from bacterial infections to mechanical ventilation
Fig. 2
Fig. 2
Sources of reactive oxygen species. Mitochondria, NADPH oxidase, xanthine oxidase, and eNOS are the major contributors of ROS in cells of vasculature during active metabolism. NADPH oxidase in phagocytic cells such as macrophages and neutrophils that are resident in blood vessels contribute to a significant amount of superoxide (O2 ·−). Endothelial NOS (eNOS) generates NO free radicals that interact with O2 ·− to generate peroxynitrite. Peroxynitrite induces nitrasative stress on cells by nitrating proteins and altering signaling pathways. When eNOS is uncoupled, it can generate superoxide. Oxidative phosphorylations in mitochondria are a source of O2 ·−. Especially complexes I, III, and IV generate O2 ·− when there is a leak of electrons at subsequent transfer stages. O2 ·− generated in mitochondria is often immediately dismutated to H2O2 by SOD which can cross mitochondrial membrane as well as cell membranes. Other lesser sources of ROS are cytochrome P450 enzymes which often generate O2 ·− during detoxification of xenobiotics and they are predominantly expressed in hepatic tissue. ADP adenosine diphosphate, ATP adenosine triphosphate, BH4 tetrahydrobiopterin, Ca-Calmodulin calcium and calmodulin, CoQ coenzyme Q, Cyt c cytochrome c, eNOS endothelial nitric oxide synthase, FADH2 flavin adenine dinucleotide, H2O2 hydrogen peroxide, IMM inner mitochondrial membrane, IMS inter-mitochondrial membrane space, NADH nicotinamide adenine dinucleotide, NADPH nicotinamide adenine dinucleotide phosphate, NO nitric oxide, OMM outer mitochondrial membrane, Pi inorganic phosphate, O2 superoxide free radical, ONOO peroxynitrite free radical, SOD superoxide dismutase, complex I—NADH oxidoreductase (I), complex II—succinate dehydrogenase (II), complex III—cytochrome c reductase (III), complex IV—cytochrome c oxidase (IV), complex V—ATP synthase (V), XH xenobiotic, XOH alcohol/aldehyde form of xenobiotic
Fig. 3.
Fig. 3.
The antioxidant system in cells. Enzymatic and nonenzymatic antioxidants catalyze reactions to neutralize free radicals by donating electrons. Enzymatic antioxidants catalyze reactions to neutralize specific free radicals such that superoxide dismutase (SOD) dismutates superoxide to hydrogen peroxide (H2O2), and catalase and glutathione peroxidase (GPx) convert hydrogen peroxide to water. GPx also converts lipid hyroperoxides (LOOH) to lipid alcohols or aldehydes (LOH). Glutathione reductase replenishes reduced glutathione (GSH) pools from oxidized glutathione (GSSG) using NADPH as reducing equivalents. Nonenzymatic antioxidants such as vitamins, flavonoids and glutathione can also reduce free radicals by donating electrons
Fig. 4.
Fig. 4.
Comparison of the transcellular and paracellular transport in physiological and pathological conditions. The transport of fluids, solutes, and macromolecules occur over transcellular and paracellular pathways. Under physiological conditions both transcellular and the paracellular transport are highly restricted, whereas under pathological conditions increased vascular permeability can be observed. ROS have several distinct impacts on the endothelial barrier. Initially, within the transcellular pathway caveolin-1 is affected by ROS leading to increased vascular permeability. ROS mainly influence the paracellular pathway through decreased expression and oligomerization of the junctional proteins as well as increases in the phosphorylation of junctional proteins on both serine and tyrosine residues. Both ROCE and SOCE are affected by ROS leading to increased endothelial Ca2+ influx. This increases calcium/calmodulin-dependent phosphorylation of myosin light chains leading to myosin contraction. Both ROCE and also SOCE are affected by ROS. AJs adherens junctions, cADPR cyclic adenosine triphosphate ribose, DAG diacylglycerol, ER endoplasmatic reticulum, GPCR G protein coupled receptor, IP3 inositol triphosphate, JAMs junctional adhesion molecules, MLC myosin light chain, MLCK myosin light chain kinase, MLCP myosin light chain phosphatase, PLC phospholipase C, PKC protein kinase C, ROCE receptor-operated calcium entry, ROS reactive oxygen species, SOCE store-operated calcium entry, TJ tight junctions, TRPC/M transient receptor potential canonical/melastatin, VOOs vesiculo-vacuolar organelles, ZO zonula occludens
Fig. 5.
Fig. 5.
ROS-mediated endothelial polymorphonuclear leukocyte migration. Over both transcellular and paracellular pathways, polymorphonuclear leukocytes (PMNs) pass through the endothelium to migrate from the blood lumen into the alveolar lumen. In both pathways selectin, integrins, and immunoglobulins (Ig) help facilitate this cellular migration. The transcellular migration of PMNs through the cell body is a rare event. More commonly paracellular migration occurs. This requires a number of migration steps: (1) tethering and rolling; (2) activation; (3) adhesion; (4) crawling; (5) transendothelial migration, and (6) diapedesis. Within each migration steps, varying cell adhesion molecules (CAMs) are needed. Selectins modulate the initially tethering and rolling of PMNs on the inner surface of the blood vessel, whereby PMNs start to slow down. Based on the rolling, endothelial cells are activated to release chemokines (CXCL1 or CXCL8) that transmit and bind to chemokine receptors (CXCLR1 and CXCLR8) localized on the surface of the PMNs. This causes PMN localized integrins to change from a low-affinity state (inactive bent conformation) to a high-affinity state (active fully extended conformation) forming a firm adhesion to CAMs of the Ig superfamily. The ultimate entry of the PMNs into the blood barrier occurs over these established CAMs formations. Increased ROS leads to enhanced invasion of immune cells into the injured tissue. ROS also regulate the expression CAMs both directly and through transcription factors (NF-κB, AP-1) that exert major influences on PMN migration. NF-κB nuclear factor-kappa-B, PMNs polymorphonuclear leukocytes, ROS reactive oxygen species

References

    1. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet (London, England) 1967;2(7511):319–323. doi: 10.1016/S0140-6736(67)90168-7.
    1. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: The berlin definition. Journal of the American Medical Association. 2012;307(23):2526–2533.
    1. Matthay MA, Wiener-Kronish JP. Intact epithelial barrier function is critical for the resolution of alveolar edema in humans. The American Review of Respiratory Disease. 1990;142(6 Pt 1):1250–1257. doi: 10.1164/ajrccm/142.6_Pt_1.1250.
    1. Gropper MA, Wiener-Kronish J. The epithelium in acute lung injury/acute respiratory distress syndrome. Current Opinion in Critical Care. 2008;14(1):11–15. doi: 10.1097/MCC.0b013e3282f417a0.
    1. Ware LB, Matthay MA. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine. 2001;163(6):1376–1383. doi: 10.1164/ajrccm.163.6.2004035.
    1. Mikkelsen ME, Shah CV, Meyer NJ, Gaieski DF, Lyon S, Miltiades AN, et al. The epidemiology of acute respiratory distress syndrome in patients presenting to the emergency department with severe sepsis. Shock. 2013;40(5):375–381. doi: 10.1097/SHK.0b013e3182a64682.
    1. Kushimoto S, Endo T, Yamanouchi S, Sakamoto T, Ishikura H, Kitazawa Y, et al. Relationship between extravascular lung water and severity categories of acute respiratory distress syndrome by the berlin definition. Critical Care (London, England) 2013;17(4):R132. doi: 10.1186/cc12811.
    1. Rodrigues RS, Bozza FA, Hanrahan CJ, Wang LM, Wu Q, Hoffman JM, et al. 18F-fluoro-2-deoxyglucose PET informs neutrophil accumulation and activation in lipopolysaccharide-induced acute lung injury. Nuclear Medicine and Biology. 2017;48:52–62. doi: 10.1016/j.nucmedbio.2017.01.005.
    1. Bellani G, Rouby JJ, Constantin JM, Pesenti A. Looking closer at acute respiratory distress syndrome: The role of advanced imaging techniques. Current Opinion in Critical Care. 2017;23(1):30–37. doi: 10.1097/MCC.0000000000000380.
    1. Elicker BM, Jones KT, Naeger DM, Frank JA. Imaging of acute lung injury. Radiologic Clinics of North America. 2016;54(6):1119–1132. doi: 10.1016/j.rcl.2016.05.006.
    1. Ma H, Huang D, Guo L, Chen Q, Zhong W, Geng Q, et al. Strong correlation between lung ultrasound and chest computerized tomography imaging for the detection of acute lung injury/acute respiratory distress syndrome in rats. Journal of Thoracic Disease. 2016;8(7):1443–1448. doi: 10.21037/jtd.2016.05.15.
    1. Pesenti A, Musch G, Lichtenstein D, Mojoli F, Amato MB, Cinnella G, et al. Imaging in acute respiratory distress syndrome. Intensive Care Medicine. 2016;42(5):686–698. doi: 10.1007/s00134-016-4328-1.
    1. Kanazawa M. Acute lung injury: Clinical concept and experimental approaches to pathogenesis. The Keio Journal of Medicine. 1996;45(3):131–139. doi: 10.2302/kjm.45.131.
    1. Fujishima S. Pathophysiology and biomarkers of acute respiratory distress syndrome. Journal of Intensive Care. 2014;2(1):32. doi: 10.1186/2052-0492-2-32.
    1. Chen W, Ware LB. Prognostic factors in the acute respiratory distress syndrome. Clinical and Translational Medicine. 2015;4(1):65. doi: 10.1186/s40169-015-0065-2.
    1. Ware LB, Koyama T, Zhao Z, Janz DR, Wickersham N, Bernard GR, et al. Biomarkers of lung epithelial injury and inflammation distinguish severe sepsis patients with acute respiratory distress syndrome. Critical Care (London, England) 2013;17(5):R253. doi: 10.1186/cc13080.
    1. Jensen JS, Itenov TS, Thormar KM, Hein L, Mohr TT, Andersen MH, et al. Prediction of non-recovery from ventilator-demanding acute respiratory failure, ARDS and death using lung damage biomarkers: Data from a 1200-patient critical care randomized trial. Annals of Intensive Care. 2016;6(1):114. doi: 10.1186/s13613-016-0212-y.
    1. Wang T, Gross C, Desai A, Zemskov E, Wu X, Garcia AN, et al. Endothelial cell Signaling and ventilator-induced lung injury (VILI): Molecular mechanisms, genomic analyses & therapeutic targets. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2016;312(4):L452–L476. doi: 10.1152/ajplung.00231.2016.
    1. Curley GF, Laffey JG, Zhang H, Slutsky AS. Biotrauma and ventilator-induced lung injury: Clinical implications. Chest. 2016;150(5):1109–1117. doi: 10.1016/j.chest.2016.07.019.
    1. Carrasco Loza R, Villamizar Rodriguez G, Medel FN. Ventilator-induced lung injury (VILI) in acute respiratory distress syndrome (ARDS): Volutrauma and molecular effects. The Open Respiratory Medicine Journal. 2015;9:112–119. doi: 10.2174/1874306401509010112.
    1. Moloney ED, Griffiths MJ. Protective ventilation of patients with acute respiratory distress syndrome. British Journal of Anaesthesia. 2004;92(2):261–270. doi: 10.1093/bja/aeh031.
    1. Amado-Rodriguez L, Del Busto C, Garcia-Prieto E, Albaiceta GM. Mechanical ventilation in acute respiratory distress syndrome: The open lung revisited. Medicina Intensiva. 2017;pii:30028.
    1. Nieman GF, Satalin J, Andrews P, Aiash H, Habashi NM, Gatto LA. Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (VILI) Intensive Care Medicine Experimental. 2017;5(1):8. doi: 10.1186/s40635-017-0121-x.
    1. Lee KY. Pneumonia, acute respiratory distress syndrome, and early immune-modulator therapy. International Journal of Molecular Sciences. 2017;18(2):388. doi: 10.3390/ijms18020388.
    1. Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology. 2006;141(2):312–322. doi: 10.1104/pp.106.077073.
    1. Babcock GT, Wikstrom M. Oxygen activation and the conservation of energy in cell respiration. Nature. 1992;356(6367):301–309. doi: 10.1038/356301a0.
    1. Fabian M, Wong WW, Gennis RB, Palmer G. Mass spectrometric determination of dioxygen bond splitting in the "peroxy" intermediate of cytochrome c oxidase. Proceeding of the National Academy Sciences of United State America. 1999;96(23):13114–13117. doi: 10.1073/pnas.96.23.13114.
    1. Fridovich I. Superoxide Radical and Superoxide Dismutases. Annual Review of Biochemistry. 1995;64:97–112. doi: 10.1146/annurev.bi.64.070195.000525.
    1. Liochev SI, Fridovich I. Superoxide and iron: Partners in crime. IUBMB Life. 1999;48(2):157–161. doi: 10.1080/713803492.
    1. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: The good, the bad, and ugly. The American Journal of Physiology. 1996;271(5 Pt 1):C1424–C1437.
    1. Martin WJ., 2nd Neutrophils kill pulmonary endothelial cells by a hydrogen-peroxide-dependent pathway. An in vitro model of neutrophil-mediated lung injury. The American Review of Respiratory Disease. 1984;130(2):209–213.
    1. Aggarwal S, Dimitropoulou C, Lu Q, Black SM, Sharma S. Glutathione supplementation attenuates lipopolysaccharide-induced mitochondrial dysfunction and apoptosis in a mouse model of acute lung injury. Frontiers in Physiology. 2012;3:161. doi: 10.3389/fphys.2012.00161.
    1. Chen L, Zhao L, Zhang C, Lan Z. Protective effect of p-cymene on lipopolysaccharide-induced acute lung injury in mice. Inflammation. 2014;37(2):358–364. doi: 10.1007/s10753-013-9747-3.
    1. Howard MD, Greineder CF, Hood ED, Muzykantov VR. Endothelial targeting of liposomes encapsulating SOD/catalase mimetic EUK-134 alleviates acute pulmonary inflammation. Journal of Controlled Release. 2014;177:34–41. doi: 10.1016/j.jconrel.2013.12.035.
    1. Ye S, Lowther S, Stambas J. Inhibition of reactive oxygen species production ameliorates inflammation induced by influenza a viruses via upregulation of SOCS1 and SOCS3. Journal of Virology. 2015;89(5):2672–2683. doi: 10.1128/JVI.03529-14.
    1. Husari A, Khayat A, Bitar H, Hashem Y, Rizkallah A, Zaatari G, et al. Antioxidant activity of pomegranate juice reduces acute lung injury secondary to hyperoxia in an animal model. BMC Research Notes. 2014;7:664. doi: 10.1186/1756-0500-7-664.
    1. Shohrati M, Karimzadeh I, Saburi A, Khalili H, Ghanei M. The role of N-acetylcysteine in the management of acute and chronic pulmonary complications of sulfur mustard: A literature review. Inhalation Toxicology. 2014;26(9):507–523. doi: 10.3109/08958378.2014.920439.
    1. Zhao W, Zhou S, Yao W, Gan X, Su G, Yuan D, et al. Propofol prevents lung injury after intestinal ischemia-reperfusion by inhibiting the interaction between mast cell activation and oxidative stress. Life Sciences. 2014;108(2):80–87. doi: 10.1016/j.lfs.2014.05.009.
    1. Lingaraju MC, Pathak NN, Begum J, Balaganur V, Bhat RA, Ram M, et al. Betulinic acid negates oxidative lung injury in surgical sepsis model. The Journal of Surgical Research. 2015;193(2):856–867. doi: 10.1016/j.jss.2014.09.008.
    1. Hu Z, Gu Z, Sun M, Zhang K, Gao P, Yang Q, et al. Ursolic acid improves survival and attenuates lung injury in septic rats induced by cecal ligation and puncture. The Journal of Surgical Research. 2015;194(2):528–536. doi: 10.1016/j.jss.2014.10.027.
    1. Yilmaz MZ, Guzel A, Torun AC, Okuyucu A, Salis O, Karli R, et al. The therapeutic effects of anti-oxidant and anti-inflammatory drug quercetin on aspiration-induced lung injury in rats. Journal of Molecular Histology. 2014;45(2):195–203. doi: 10.1007/s10735-013-9542-3.
    1. Yamamoto Y, Sousse LE, Enkhbaatar P, Kraft ER, Deyo DJ, Wright CL, et al. Gamma-tocopherol nebulization decreases oxidative stress, arginase activity, and collagen deposition after burn and smoke inhalation in the ovine model. Shock. 2012;38(6):671–676.
    1. Campos R, Shimizu MH, Volpini RA, de Braganca AC, Andrade L, Lopes FD, et al. N-acetylcysteine prevents pulmonary edema and acute kidney injury in rats with sepsis submitted to mechanical ventilation. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2012;302(7):L640–L650. doi: 10.1152/ajplung.00097.2011.
    1. Davidovich N, DiPaolo BC, Lawrence GG, Chhour P, Yehya N, Margulies SS. Cyclic stretch-induced oxidative stress increases pulmonary alveolar epithelial permeability. American Journal of Respiratory Cell and Molecular Biology. 2013;49(1):156–164. doi: 10.1165/rcmb.2012-0252OC.
    1. Reddy SP, Hassoun PM, Brower R. Redox imbalance and ventilator-induced lung injury. Antioxidants & Redox Signaling. 2007;9(11):2003–2012. doi: 10.1089/ars.2007.1770.
    1. Stirpe F, Della CE. The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O) The Journal of Biological Chemistry. 1969;244(14):3855–3863.
    1. Waud WR, Rajagopalan KV. Purification and properties of the NAD+−dependent (type D) and O2-dependent (type O) forms of rat liver xanthine dehydrogenase. Archives of Biochemistry and Biophysics. 1976;172(2):354–364. doi: 10.1016/0003-9861(76)90087-4.
    1. Hille R, Nishino T. Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. The FASEB Journal. 1995;9(11):995–1003.
    1. Barnard ML, Matalon S. Mechanisms of extracellular reactive oxygen species injury to the pulmonary microvasculature. Journal of Applied Physiology. 1992;72(5):1724–1729.
    1. Kennedy TP, Rao NV, Hopkins C, Pennington L, Tolley E, Hoidal JR. Role of reactive oxygen species in reperfusion injury of the rabbit lung. Journal of Clinical Investigation. 1989;83(4):1326–1335. doi: 10.1172/JCI114019.
    1. Abdulnour REE, Peng XQ, Finigan JH, Han EJ, Hasan EJ, Birukov KG, et al. Mechanical stress activates xanthine oxidoreductase through MAP kinase-dependent pathways. American Journal of Physiology Lung C. 2006;291(3):L345–LL53. doi: 10.1152/ajplung.00453.2005.
    1. Shasby DM, Lind SE, Shasby SS, Goldsmith JC, Hunninghake GW. Reversible oxidant-induced increases in albumin transfer across cultured endothelium - alterations in cell-shape and calcium homeostasis. Blood. 1985;65(3):605–614.
    1. Syrkina O, Jafari B, Hales CA, Quinn DA. Oxidant stress mediates inflammation and apoptosis in ventilator-induced lung injury. Respirology. 2008;13(3):333–340. doi: 10.1111/j.1440-1843.2008.01279.x.
    1. Dolinay T, Wu W, Kaminski N, Ifedigbo E, Kaynar AM, Szilasi M, et al. Mitogen-activated protein kinases regulate susceptibility to ventilator-induced lung injury. PloS One. 2008;3(2):e1601. doi: 10.1371/journal.pone.0001601.
    1. Le A, Damico R, Damarla M, Boueiz A, Pae HH, Skirball J, et al. Alveolar cell apoptosis is dependent on p38 MAP kinase-mediated activation of xanthine oxidoreductase in ventilator-induced lung injury. Journal of Applied Physiology. 2008;105(4):1282–1290. doi: 10.1152/japplphysiol.90689.2008.
    1. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620.
    1. Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, et al. Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension. 1994;23(6 Pt 2):1121–1131. doi: 10.1161/01.HYP.23.6.1121.
    1. Ludwig ML, Marletta MA. A new decoration for nitric oxide synthase - a Zn(Cys)4 site. Structure. 1999;7(4):R73–R79. doi: 10.1016/S0969-2126(99)80047-1.
    1. Campbell MG, Smith BC, Potter CS, Carragher B, Marletta MA. Molecular architecture of mammalian nitric oxide synthases. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(35):E3614–E3623. doi: 10.1073/pnas.1413763111.
    1. Abu-Soud HM, Stuehr DJ. Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(22):10769–10772. doi: 10.1073/pnas.90.22.10769.
    1. Stuehr D, Pou S, Rosen GM. Oxygen reduction by nitric-oxide synthases. The Journal of Biological Chemistry. 2001;276(18):14533–14536. doi: 10.1074/jbc.R100011200.
    1. Xia Y, Tsai AL, Berka V, Zweier JL. Superoxide generation from endothelial nitric-oxide synthase. A Ca2+/calmodulin-dependent and tetrahydrobiopterin regulatory process. The Journal of Biological Chemistry. 1998;273(40):25804–25808. doi: 10.1074/jbc.273.40.25804.
    1. Vasquez-Vivar J, Kalyanaraman B, Martasek P, Hogg N, Masters BS, Karoui H, et al. Superoxide generation by endothelial nitric oxide synthase: The influence of cofactors. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(16):9220–9225. doi: 10.1073/pnas.95.16.9220.
    1. Bailey J, Shaw A, Fischer R, Ryan BJ, Kessler BM, McCullagh J, et al. A novel role for endothelial tetrahydrobiopterin in mitochondrial redox balance. Free Radical Biology & Medicine. 2017;104:214–225. doi: 10.1016/j.freeradbiomed.2017.01.012.
    1. Aggarwal S, Gross CM, Kumar S, Dimitropoulou C, Sharma S, Gorshkov BA, et al. Dimethylarginine dimethylaminohydrolase II overexpression attenuates LPS-mediated lung leak in acute lung injury. American Journal of Respiratory Cell and Molecular Biology. 2014;50(3):614–625. doi: 10.1165/rcmb.2013-0193OC.
    1. Sharma S, Smith A, Kumar S, Aggarwal S, Rehmani I, Snead C, et al. Mechanisms of nitric oxide synthase uncoupling in endotoxin-induced acute lung injury: Role of asymmetric dimethylarginine. Vascular Pharmacology. 2010;52(5–6):182–190. doi: 10.1016/j.vph.2009.11.010.
    1. Gunaydin H, Houk KN. Mechanisms of peroxynitrite-mediated nitration of tyrosine. Chemical Research in Toxicology. 2009;22(5):894–898. doi: 10.1021/tx800463y.
    1. Zou MH, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of endothelial nitric oxide synthase by peroxynitrite. The Journal of Clinical Investigation. 2002;109(6):817–826. doi: 10.1172/JCI0214442.
    1. Ghosh S, Gupta M, Xu W, Mavrakis DA, Janocha AJ, Comhair SA, et al. Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension. American Journal of Physiology Lung Cellular and Molecular Physiology. 2016;310(11):L1199–L1205. doi: 10.1152/ajplung.00092.2016.
    1. Chen F, Kumar S, Yu Y, Aggarwal S, Gross C, Wang Y, et al. PKC-dependent phosphorylation of eNOS at T495 regulates eNOS coupling and endothelial barrier function in response to G+ −toxins. PloS One. 2014;9(7):e99823. doi: 10.1371/journal.pone.0099823.
    1. Sun X, Kumar S, Sharma S, Aggarwal S, Lu Q, Gross C, et al. Endothelin-1 induces a glycolytic switch in pulmonary arterial endothelial cells via the mitochondrial translocation of endothelial nitric oxide synthase. American Journal of Respiratory Cell and Molecular Biology. 2014;50(6):1084–1095. doi: 10.1165/rcmb.2013-0187OC.
    1. Zhan X, Desiderio DM. Nitroproteins from a human pituitary adenoma tissue discovered with a nitrotyrosine affinity column and tandem mass spectrometry. Analytical Biochemistry. 2006;354(2):279–289. doi: 10.1016/j.ab.2006.05.024.
    1. Rafikov R, Dimitropoulou C, Aggarwal S, Kangath A, Gross C, Pardo D, et al. Lipopolysaccharide-induced lung injury involves the nitration-mediated activation of RhoA. The Journal of Biological Chemistry. 2014;289(8):4710–4722. doi: 10.1074/jbc.M114.547596.
    1. Gross CM, Rafikov R, Kumar S, Aggarwal S, Ham PB, 3rd, Meadows ML, et al. Endothelial nitric oxide synthase deficient mice are protected from lipopolysaccharide induced acute lung injury. PloS One. 2015;10(3):e0119918. doi: 10.1371/journal.pone.0119918.
    1. Murakami K, Enkhbaatar P, Yu YM, Traber LD, Cox RA, Hawkins HK, et al. L-arginine attenuates acute lung injury after smoke inhalation and burn injury in sheep. Shock. 2007;28(4):477–483. doi: 10.1097/shk.0b013e31804a59bd.
    1. Vaporidi K, Francis RC, Bloch KD, Zapol WM. Nitric oxide synthase 3 contributes to ventilator-induced lung injury. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2010;299(2):L150–L159. doi: 10.1152/ajplung.00341.2009.
    1. Mitchell P. Vectorial chemiosmotic processes. Annual Review of Biochemistry. 1977;46:996–1005. doi: 10.1146/annurev.bi.46.070177.005024.
    1. O'Malley Y, Fink BD, Ross NC, Prisinzano TE, Sivitz WI. Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria. The Journal of Biological Chemistry. 2006;281(52):39766–39775. doi: 10.1074/jbc.M608268200.
    1. Johnson JE, Jr, Choksi K, Widger WR. NADH-ubiquinone oxidoreductase: Substrate-dependent oxygen turnover to superoxide anion as a function of flavin mononucleotide. Mitochondrion. 2003;3(2):97–110. doi: 10.1016/S1567-7249(03)00084-9.
    1. Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, Kunz WS. Characterization of superoxide-producing sites in isolated brain mitochondria. The Journal of Biological Chemistry. 2004;279(6):4127–4135. doi: 10.1074/jbc.M310341200.
    1. Kussmaul L, Hirst J. The mechanism of superoxide production by NADH:Ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(20):7607–7612. doi: 10.1073/pnas.0510977103.
    1. Drose S, Brandt U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. The Journal of Biological Chemistry. 2008;283(31):21649–21654. doi: 10.1074/jbc.M803236200.
    1. Boveris A, Cadenas E, Stoppani AO. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. The Biochemical Journal. 1976;156(2):435–444. doi: 10.1042/bj1560435.
    1. Muller FL, Liu YH, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. Journal of Biological Chemistry. 2004;279(47):49064–49073. doi: 10.1074/jbc.M407715200.
    1. Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron-donor for superoxide formation by complex iii of heart-mitochondria. Archives of Biochemistry and Biophysics. 1985;237(2):408–414. doi: 10.1016/0003-9861(85)90293-0.
    1. DiMauro S, Schon EA. Mitochondrial respiratory-chain diseases. The New England Journal of Medicine. 2003;348(26):2656–2668. doi: 10.1056/NEJMra022567.
    1. Mansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, et al. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metabolism. 2005;1(6):393–399. doi: 10.1016/j.cmet.2005.05.003.
    1. Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–832. doi: 10.1016/j.cell.2010.01.040.
    1. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, et al. Ordering the cytochrome c-initiated caspase cascade: Hierarchical activation of caspases-2, −3, −6, −7, −8, and −10 in a caspase-9-dependent manner. The Journal of Cell Biology. 1999;144(2):281–292. doi: 10.1083/jcb.144.2.281.
    1. Ricci C, Pastukh V, Leonard J, Turrens J, Wilson G, Schaffer D, et al. Mitochondrial DNA damage triggers mitochondrial-superoxide generation and apoptosis. American Journal of Physiology. Cell Physiology. 2008;294(2):C413–C422. doi: 10.1152/ajpcell.00362.2007.
    1. Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence. 2014;5(1):66–72. doi: 10.4161/viru.26907.
    1. Gu XL, Wu GN, Yao YW, Zeng JL, Shi DH, Lv TF, et al. Intratracheal administration of mitochondrial DNA directly provokes lung inflammation through the TLR9-p38 MAPK pathway. Free Radical Biology of Medicine. 2015;83:149–158. doi: 10.1016/j.freeradbiomed.2015.02.034.
    1. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–225. doi: 10.1038/nature09663.
    1. Santos JH, Hunakova L, Chen YM, Bortner C, Van Houten B. Cell sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. The Journal of Biological Chemistry. 2003;278(3):1728–1734. doi: 10.1074/jbc.M208752200.
    1. Green DR, Llambi F. Cell death Signaling. Csh Perspect Biology. 2015;7(12):pii.
    1. Suliman HB, Piantadosi CA. Mitochondrial biogenesis: Regulation by endogenous gases during inflammation and organ stress. Current Pharm Design. 2014;20(35):5653–5662. doi: 10.2174/1381612820666140306095717.
    1. Nakahira K, Haspel JA, Rathinam VAK, Lee SJ, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nature Immunology. 2011;12(3):222–U57. doi: 10.1038/ni.1980.
    1. Chapman KE, Sinclair SE, Zhuang D, Hassid A, Desai LP, Waters CM. Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2005;289(5):L834–L841. doi: 10.1152/ajplung.00069.2005.
    1. Sun SQ, Sursal T, Adibnia Y, Zhao C, Zheng Y, Li HP, et al. Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways. PloS One. 2013;8(3):e59989. doi: 10.1371/journal.pone.0059989.
    1. Finkel T, Menazza S, Holmstrom KM, Parks RJ, Liu JL, Sun JH, et al. The ins and outs of mitochondrial calcium. Circulation Research. 2015;116(11):1810–1819. doi: 10.1161/CIRCRESAHA.116.305484.
    1. Otsubo C, Bharathi S, Uppala R, Ilkayeva OR, Wang D, McHugh K, et al. Long-chain Acylcarnitines reduce lung function by inhibiting pulmonary surfactant. The Journal of Biological Chemistry. 2015;290(39):23897–23904. doi: 10.1074/jbc.M115.655837.
    1. Guengerich FP. Reactions and significance of cytochrome P-450 enzymes. The Journal of Biological Chemistry. 1991;266(16):10019–10022.
    1. Hamdane D, Zhang H, Hollenberg P. Oxygen activation by cytochrome P450 monooxygenase. Photosynthesis Research. 2008;98(1–3):657–666. doi: 10.1007/s11120-008-9322-1.
    1. Fleming I, Michaelis UR, Bredenkotter D, Fisslthaler B, Dehghani F, Brandes RP, et al. Endothelium-derived hyperpolarizing factor synthase (cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circulation Research. 2001;88(1):44–51. doi: 10.1161/01.RES.88.1.44.
    1. Popp R, Fleming I, Busse R. Pulsatile stretch in coronary arteries elicits release of endothelium-derived hyperpolarizing factor: A modulator of arterial compliance. Circulation Research. 1998;82(6):696–703. doi: 10.1161/01.RES.82.6.696.
    1. Gray JP, Mishin V, Heck DE, Laskin DL, Laskin JD. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species. Toxicology Applied Pharmacology. 2010;247(2):76–82. doi: 10.1016/j.taap.2010.05.015.
    1. Baulig A, Garlatti M, Bonvallot V, Marchand A, Barouki R, Marano F, et al. Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2003;285(3):L671–L679. doi: 10.1152/ajplung.00419.2002.
    1. Jiang WW, Couroucli XI, Wang LH, Barrios R, Moorthy B. Augmented oxygen-mediated transcriptional activation of cytochrome P450 (CYP)1A expression and increased susceptibilities to hyperoxic lung injury in transgenic mice carrying the human CYP1A1 or mouse 1A2 promoter in vivo. Biochemical and Biophysical Research Communications. 2011;407(1):79–85. doi: 10.1016/j.bbrc.2011.02.113.
    1. Wang LH, Lingappan K, Jiang WW, Couroucli XI, Welty SE, Shivanna B, et al. Disruption of cytochrome P4501A2 in mice leads to increased susceptibility to hyperoxic lung injury. Free Radical Biology of Medicine. 2015;82:147–159. doi: 10.1016/j.freeradbiomed.2015.01.019.
    1. Kaphalia L, Calhoun WJ. Alcoholic lung injury: Metabolic, biochemical and immunological aspects. Toxicology Letters. 2013;222(2):171–179. doi: 10.1016/j.toxlet.2013.07.016.
    1. Clark RA. The human neutrophil respiratory burst oxidase. The Journal of Infectious Diseases. 1990;161(6):1140–1147. doi: 10.1093/infdis/161.6.1140.
    1. Han CH, Freeman JL, Lee T, Motalebi SA, Lambeth JD. Regulation of the neutrophil respiratory burst oxidase. Identification of an activation domain in p67(phox) The Journal of Biological Chemistry. 1998;273(27):16663–16668. doi: 10.1074/jbc.273.27.16663.
    1. Ago T, Nunoi H, Ito T, Sumimoto H. Mechanism for phosphorylation-induced activation of the phagocyte NADPH oxidase protein p47(phox). Triple replacement of serines 303, 304, and 328 with aspartates disrupts the SH3 domain-mediated intramolecular interaction in p47(phox), thereby activating the oxidase. The Journal of Biological Chemistry. 1999;274(47):33644–33653. doi: 10.1074/jbc.274.47.33644.
    1. Bokoch GM, Zhao T. Regulation of the phagocyte NADPH oxidase by Rac GTPase. Antioxidants & Redox Signaling. 2006;8(9–10):1533–1548. doi: 10.1089/ars.2006.8.1533.
    1. Babior BM. NADPH oxidase. Current Opinion in Immunology. 2004;16(1):42–47. doi: 10.1016/j.coi.2003.12.001.
    1. Geiszt M. NADPH oxidases: New kids on the block. Cardiovascular Research. 2006;71(2):289–299. doi: 10.1016/j.cardiores.2006.05.004.
    1. Pendyala S, Usatyuk PV, Gorshkova IA, Garcia JG, Natarajan V. Regulation of NADPH oxidase in vascular endothelium: The role of phospholipases, protein kinases, and cytoskeletal proteins. Antioxidants & Redox Signaling. 2009;11(4):841–860. doi: 10.1089/ars.2008.2231.
    1. Manea A, Tanase LI, Raicu M, Simionescu M. Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells. Biochemical and Biophysical Research Communications. 2010;396(4):901–907. doi: 10.1016/j.bbrc.2010.05.019.
    1. Wei HY, Mi XH, Ji L, Yang LC, Xia QJ, Wei YQ, et al. Protein kinase C-delta is involved in induction of NOX1 gene expression by aldosterone in rat vascular smooth muscle cells. Biochemistry-Moscow. 2010;75(3):304–309. doi: 10.1134/S0006297910030065.
    1. Chang KH, Park JM, Lee CH, Kim B, Choi KC, Choi SJ, et al. NADPH oxidase (NOX) 1 mediates cigarette smoke-induced superoxide generation in rat vascular smooth muscle cells. Toxicology In Vitro. 2017;38:49–58. doi: 10.1016/j.tiv.2016.10.013.
    1. Clark RA, Malech HL, Gallin JI, Nunoi H, Volpp BD, Pearson DW, et al. Genetic variants of chronic granulomatous disease: Prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. The New England Journal of Medicine. 1989;321(10):647–652. doi: 10.1056/NEJM198909073211005.
    1. Curnutte JT, Whitten DM, Babior BM. Defective superoxide production by granulocytes from patients with chronic granulomatous disease. The New England Journal of Medicine. 1974;290(11):593–597. doi: 10.1056/NEJM197403142901104.
    1. Kassan M, Choi SK, Galan M, Lee YH, Trebak M, Matrougui K. Enhanced p22phox expression impairs vascular function through p38 and ERK1/2 MAP kinase-dependent mechanisms in type 2 diabetic mice. American Journal of Physiology. Heart and Circulatory Physiology. 2014;306(7):H972–H980. doi: 10.1152/ajpheart.00872.2013.
    1. Petry A, Djordjevic T, Weitnauer M, Kietzmann T, Hess J, Gorlach A. NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxidants & Redox Signaling. 2006;8(9–10):1473–1484. doi: 10.1089/ars.2006.8.1473.
    1. Carrizzo A, Vecchione C, Damato A, di Nonno F, Ambrosio M, Pompeo F, et al. Rac1 pharmacological inhibition rescues human endothelial dysfunction. Journal of the American Heart Association. 2017;6(3):pii. doi: 10.1161/JAHA.116.004746.
    1. Lozhkin A, Vendrov AE, Pan H, Wickline SA, Madamanchi NR, Runge MS. NADPH oxidase 4 regulates vascular inflammation in aging and atherosclerosis. Journal of Molecular and Cellular Cardiology. 2017;102:10–21. doi: 10.1016/j.yjmcc.2016.12.004.
    1. Zhang M, Brewer AC, Schroder K, Santos CX, Grieve DJ, Wang M, et al. NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(42):18121–18126. doi: 10.1073/pnas.1009700107.
    1. Bachofen M, Weibel ER. Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clinics in Chest Medicine. 1982;3(1):35–56.
    1. Maitra U, Singh N, Gan L, Ringwood L, Li L. IRAK-1 contributes to lipopolysaccharide-induced reactive oxygen species generation in macrophages by inducing NOX-1 transcription and Rac1 activation and suppressing the expression of antioxidative enzymes. The Journal of Biological Chemistry. 2009;284(51):35403–35411. doi: 10.1074/jbc.M109.059501.
    1. Sato K, Kadiiska MB, Ghio AJ, Corbett J, Fann YC, Holland SM, et al. In vivo lipid-derived free radical formation by NADPH oxidase in acute lung injury induced by lipopolysaccharide: A model for ARDS. The FASEB Journal. 2002;16(13):1713–1720. doi: 10.1096/fj.02-0331com.
    1. Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS. Cutting edge: Direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. Journal of Immunology. 2004;173(6):3589–3593. doi: 10.4049/jimmunol.173.6.3589.
    1. Matsubara T, Ziff M. Increased superoxide anion release from human endothelial cells in response to cytokines. Journal of Immunology. 1986;137(10):3295–3298.
    1. Murphy HS, Shayman JA, Till GO, Mahrougui M, Owens CB, Ryan US, et al. Superoxide responses of endothelial cells to C5a and TNF-alpha: Divergent signal transduction pathways. The American Journal of Physiology. 1992;263(1 Pt 1):L51–L59.
    1. Li Y, Xiang M, Yuan Y, Xiao G, Zhang J, Jiang Y, et al. Hemorrhagic shock augments lung endothelial cell activation: Role of temporal alterations of TLR4 and TLR2. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2009;297(6):R1670–R1680. doi: 10.1152/ajpregu.00445.2009.
    1. Carnesecchi S, Deffert C, Pagano A, Garrido-Urbani S, Metrailler-Ruchonnet I, Schappi M, et al. NADPH oxidase-1 plays a crucial role in hyperoxia-induced acute lung injury in mice. American Journal of Respiratory and Critical Care Medicine. 2009;180(10):972–981. doi: 10.1164/rccm.200902-0296OC.
    1. Carnesecchi S, Deffert C, Pagano A, Garrido-Urbani S, Metrailler-Ruchonnet I, Schappi M, et al. NADPH oxidase-1 plays a crucial role in Hyperoxia-induced acute lung injury in mice. American Journal of Respiratory and Critical Care. 2009;180(10):972–981. doi: 10.1164/rccm.200902-0296OC.
    1. Carnesecchi S, Deffert C, Donati Y, Basset O, Hinz B, Preynat-Seauve O, et al. A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxidants & Redox Signaling. 2011;15(3):607–619. doi: 10.1089/ars.2010.3829.
    1. Davidson BA, Vethanayagam RR, Grimm MJ, Mullan BA, Raghavendran K, Blackwell TS, et al. NADPH oxidase and Nrf2 regulate gastric aspiration-induced inflammation and acute lung injury. Journal of Immunology. 2013;190(4):1714–1724. doi: 10.4049/jimmunol.1202410.
    1. Segal BH, Han W, Bushey JJ, Joo M, Bhatti Z, Feminella J, et al. NADPH oxidase limits innate immune responses in the lungs in mice. PloS One. 2010;5(3):e9631. doi: 10.1371/journal.pone.0009631.
    1. Fukai T, Ushio-Fukai M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxidants & Redox Signaling. 2011;15(6):1583–1606. doi: 10.1089/ars.2011.3999.
    1. Ndengele MM, Muscoli C, Wang ZQ, Doyle TM, Matuschak GM, Salvemini D. Superoxide potentiates NF-kappaB activation and modulates endotoxin-induced cytokine production in alveolar macrophages. Shock. 2005;23(2):186–193. doi: 10.1097/01.shk.0000144130.36771.d6.
    1. Cai L, Yi F, Dai Z, Huang X, Zhao YD, Mirza MK, et al. Loss of caveolin-1 and adiponectin induces severe inflammatory lung injury following LPS challenge through excessive oxidative/nitrative stress. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2014;306(6):L566–L573. doi: 10.1152/ajplung.00182.2013.
    1. Gonzalez PK, Zhuang J, Doctrow SR, Malfroy B, Benson PF, Menconi MJ, et al. EUK-8, a synthetic superoxide dismutase and catalase mimetic, ameliorates acute lung injury in endotoxemic swine. The Journal of Pharmacology and Experimental Therapeutics. 1995;275(2):798–806.
    1. Suresh MV, Yu B, Lakshminrusimha S, Machado-Aranda D, Talarico N, Zeng L, et al. The protective role of MnTBAP in oxidant-mediated injury and inflammation in a rat model of lung contusion. Surgery. 2013;154(5):980–990. doi: 10.1016/j.surg.2013.05.023.
    1. Putnam CD, Arvai AS, Bourne Y, Tainer JA. Active and inhibited human catalase structures: Ligand and NADPH binding and catalytic mechanism. Journal of Molecular Biology. 2000;296(1):295–309. doi: 10.1006/jmbi.1999.3458.
    1. Milligan SA, Hoeffel JM, Goldstein IM, Flick MR. Effect of catalase on endotoxin-induced acute lung injury in unanesthetized sheep. The American Review of Respiratory Disease. 1988;137(2):420–428. doi: 10.1164/ajrccm/137.2.420.
    1. Flick MR, Milligan SA, Hoeffel JM, Goldstein IM. Catalase prevents increased lung vascular permeability during air emboli in unanesthetized sheep. Journal of Applied Physiology. 1988;64(3):929–935.
    1. Kozower BD, Christofidou-Solomidou M, Sweitzer TD, Muro S, Buerk DG, Solomides CC, et al. Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury. Nature Biotechnology. 2003;21(4):392–398. doi: 10.1038/nbt806.
    1. Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sanchez-Perez P, Cadenas S, et al. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biology. 2015;6:183–197. doi: 10.1016/j.redox.2015.07.008.
    1. Day BJ. Catalase and glutathione peroxidase mimics. Biochemical Pharmacology. 2009;77(3):285–296. doi: 10.1016/j.bcp.2008.09.029.
    1. Amir Aslani B, Ghobadi S. Studies on oxidants and antioxidants with a brief glance at their relevance to the immune system. Life Sciences. 2016;146:163–173. doi: 10.1016/j.lfs.2016.01.014.
    1. Kim KS, Suh GJ, Kwon WY, Kwak YH, Lee K, Lee HJ, et al. Antioxidant effects of selenium on lung injury in paraquat intoxicated rats. Clinical Toxicology (Philadelphia, Pa.) 2012;50(8):749–753. doi: 10.3109/15563650.2012.708418.
    1. Petronilho F, Florentino D, Silvestre F, Danielski LG, Nascimento DZ, Vieira A, et al. Ebselen attenuates lung injury in experimental model of carrageenan-induced pleurisy in rats. Inflammation. 2015;38(4):1394–1400. doi: 10.1007/s10753-015-0113-5.
    1. Moutet M, d'Alessio P, Malette P, Devaux V, Chaudiere J. Glutathione peroxidase mimics prevent TNFalpha- and neutrophil-induced endothelial alterations. Free Radical Biology & Medicine. 1998;25(3):270–281. doi: 10.1016/S0891-5849(98)00038-0.
    1. Wagner JG, Birmingham NP, Jackson-Humbles D, Jiang Q, Harkema JR, Peden DB. Supplementation with gamma-tocopherol attenuates endotoxin-induced airway neutrophil and mucous cell responses in rats. Free Radical Biology & Medicine. 2014;68:101–109. doi: 10.1016/j.freeradbiomed.2013.11.024.
    1. Morita N, Shimoda K, Traber MG, Westphal M, Enkhbaatar P, Murakami K, et al. Vitamin E attenuates acute lung injury in sheep with burn and smoke inhalation injury. Redox Report. 2006;11(2):61–70. doi: 10.1179/135100006X101020.
    1. Gomes-Rochette NF, Da Silveira VM, Nabavi SM, Mota EF, Nunes-Pinheiro DC, Daglia M, et al. Fruit as potent natural antioxidants and their biological effects. Current Pharmaceutical Biotechnology. 2016;17(11):986–993. doi: 10.2174/1389201017666160425115401.
    1. Ding XM, Pan L, Wang Y, Xu QZ. Baicalin exerts protective effects against lipopolysaccharide-induced acute lung injury by regulating the crosstalk between the CX3CL1-CX3CR1 axis and NF-kappaB pathway in CX3CL1-knockout mice. International Journal of Molecular Medicine. 2016;37(3):703–715. doi: 10.3892/ijmm.2016.2456.
    1. Fouad AA, Albuali WH, Jresat I. Protective effect of Naringenin against lipopolysaccharide-induced acute lung injury in rats. Pharmacology. 2016;97(5–6):224–232. doi: 10.1159/000444262.
    1. Kong G, Huang X, Wang L, Li Y, Sun T, Han S, et al. Astilbin alleviates LPS-induced ARDS by suppressing MAPK signaling pathway and protecting pulmonary endothelial glycocalyx. International Immunopharmacology. 2016;36:51–58. doi: 10.1016/j.intimp.2016.03.039.
    1. Luan RL, Meng XX, Jiang W. Protective effects of Apigenin against Paraquat-induced acute lung injury in mice. Inflammation. 2016;39(2):752–758. doi: 10.1007/s10753-015-0302-2.
    1. Lv H, Liu Q, Wen Z, Feng H, Deng X, Ci X. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3beta-Nrf2 signal axis. Redox Biology. 2017;12:311–324. doi: 10.1016/j.redox.2017.03.001.
    1. Shen H, Wu N, Liu Z, Zhao H, Zhao M. Epigallocatechin-3-gallate alleviates paraquat-induced acute lung injury and inhibits upregulation of toll-like receptors. Life Sciences. 2017;170:25–32. doi: 10.1016/j.lfs.2016.11.021.
    1. Wang C, Zeng L, Zhang T, Liu J, Wang W. Casticin inhibits lipopolysaccharide-induced acute lung injury in mice. European Journal of Pharmacology. 2016;789:172–178. doi: 10.1016/j.ejphar.2016.07.035.
    1. Li T, Zhang J, Feng J, Li Q, Wu L, Ye Q, et al. Resveratrol reduces acute lung injury in a LPSinduced sepsis mouse model via activation of Sirt1. Molecular Medicine Reports. 2013;7(6):1889–1895. doi: 10.3892/mmr.2013.1444.
    1. Rieder SA, Nagarkatti P, Nagarkatti M. Multiple anti-inflammatory pathways triggered by resveratrol lead to amelioration of staphylococcal enterotoxin B-induced lung injury. British Journal of Pharmacology. 2012;167(6):1244–1258. doi: 10.1111/j.1476-5381.2012.02063.x.
    1. Packer L, Cadenas E. Lipoic acid: Energy metabolism and redox regulation of transcription and cell signaling. Journal of Clinical Biochemistry and Nutrition. 2011;48(1):26–32. doi: 10.3164/jcbn.11-005FR.
    1. Bulmus FG, Gursu MF, Muz MH, Yaman I, Bulmus O, Sakin F. Protective effects of alpha-lipoic acid on oleic acid-induced acute lung injury in rats. Balkan Medical Journal. 2013;30(3):309–314. doi: 10.5152/balkanmedj.2013.8426.
    1. Lin YC, Lai YS, Chou TC. The protective effect of alpha-lipoic acid in lipopolysaccharide-induced acute lung injury is mediated by heme oxygenase-1. Evidence-based Complementary and Alternative Medicine. 2013;2013:590363.
    1. Fisher BJ, Seropian IM, Kraskauskas D, Thakkar JN, Voelkel NF, Fowler AA, 3rd, et al. Ascorbic acid attenuates lipopolysaccharide-induced acute lung injury. Critical Care Medicine. 2011;39(6):1454–1460. doi: 10.1097/CCM.0b013e3182120cb8.
    1. Fukui H, Iwahashi H, Endoh S, Nishio K, Yoshida Y, Hagihara Y, et al. Ascorbic acid attenuates acute pulmonary oxidative stress and inflammation caused by zinc oxide nanoparticles. Journal of Occupational Health. 2015;57(2):118–125. doi: 10.1539/joh.14-0161-OA.
    1. Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascular permeability. Journal of Applied Physiology. 2001;91(4):1487–1500.
    1. Gehr P, Bachofen M, Weibel ER. The normal human lung: Ultrastructure and morphometric estimation of diffusion capacity. Respiration Physiology. 1978;32(2):121–140. doi: 10.1016/0034-5687(78)90104-4.
    1. Weibel ER. How does lung structure affect gas exchange? Chest. 1983;83(4):657–665. doi: 10.1378/chest.83.4.657.
    1. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiological Reviews. 2006;86(1):279–367. doi: 10.1152/physrev.00012.2005.
    1. Agre P. The aquaporin water channels. Proceedings of the American Thoracic Society. 2006;3(1):5–13. doi: 10.1513/pats.200510-109JH.
    1. Sukriti S, Tauseef M, Yazbeck P, Mehta D. Mechanisms regulating endothelial permeability. Pulmonary Circulation. 2014;4(4):535–551. doi: 10.1086/677356.
    1. Orfanos SE, Mavrommati I, Korovesi I, Roussos C. Pulmonary endothelium in acute lung injury: From basic science to the critically ill. Intensive Care Medicine. 2004;30(9):1702–1714. doi: 10.1007/s00134-004-2370-x.
    1. Dvorak AM, Kohn S, Morgan ES, Fox P, Nagy JA, Dvorak HF. The vesiculo-vacuolar organelle (VVO): A distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. Journal of Leukocyte Biology. 1996;59(1):100–115.
    1. Predescu SA, Predescu DN, Malik AB. Molecular determinants of endothelial transcytosis and their role in endothelial permeability. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2007;293(4):L823–L842. doi: 10.1152/ajplung.00436.2006.
    1. Predescu D, Palade GE. Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. The American Journal of Physiology. 1993;265(2 Pt 2):H725–H733.
    1. Frokjaer-Jensen J. The endothelial vesicle system in cryofixed frog mesenteric capillaries analysed by ultrathin serial sectioning. Journal of Electron Microscopy Technique. 1991;19(3):291–304. doi: 10.1002/jemt.1060190305.
    1. Luanpitpong S, Talbott SJ, Rojanasakul Y, Nimmannit U, Pongrakhananon V, Wang L, et al. Regulation of lung cancer cell migration and invasion by reactive oxygen species and caveolin-1. The Journal of Biological Chemistry. 2010;285(50):38832–38840. doi: 10.1074/jbc.M110.124958.
    1. Bian F, Cui J, Zheng T, Jin S. Reactive oxygen species mediate angiotensin II-induced transcytosis of low-density lipoprotein across endothelial cells. International Journal of Molecular Medicine. 2017;39(3):629–635. doi: 10.3892/ijmm.2017.2887.
    1. Gopalakrishna D, Pennington S, Karaa A, Clemens MG. ET-1 stimulates superoxide production by eNOS following exposure of vascular endothelial cells to endotoxin. Shock. 2016;46(1):60–66. doi: 10.1097/SHK.0000000000000576.
    1. Sarmiento D, Montorfano I, Caceres M, Echeverria C, Fernandez R, Cabello-Verrugio C, et al. Endotoxin-induced vascular endothelial cell migration is dependent on TLR4/NF-kappaB pathway, NAD(P)H oxidase activation, and transient receptor potential melastatin 7 calcium channel activity. The International Journal of Biochemistry & Cell Biology. 2014;55:11–23. doi: 10.1016/j.biocel.2014.08.001.
    1. Tiruppathi C, Shimizu J, Miyawaki-Shimizu K, Vogel SM, Bair AM, Minshall RD, et al. Role of NF-kappaB-dependent caveolin-1 expression in the mechanism of increased endothelial permeability induced by lipopolysaccharide. The Journal of Biological Chemistry. 2008;283(7):4210–4218. doi: 10.1074/jbc.M703153200.
    1. You QH, Zhang D, Sun GY, Yue Y, Xu XJ. Role of caveolin-1 in pulmonary microvascular endothelial cells injury induced by lipopolysaccharide in rat. Zhonghua wei zhong bing ji jiu yi xue. 2013;25(12):706–710.
    1. Wang N, Zhang D, Sun G, Zhang H, You Q, Shao M, et al. Lipopolysaccharide-induced caveolin-1 phosphorylation-dependent increase in transcellular permeability precedes the increase in paracellular permeability. Drug Design, Development and Therapy. 2015;9:4965–4977.
    1. Garrean S, Gao XP, Brovkovych V, Shimizu J, Zhao YY, Vogel SM, et al. Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. Journal of Immunology. 2006;177(7):4853–4860. doi: 10.4049/jimmunol.177.7.4853.
    1. Kuebler WM, Wittenberg C, Lee WL, Reppien E, Goldenberg NM, Lindner K, et al. Thrombin stimulates albumin transcytosis in lung microvascular endothelial cells via activation of acid sphingomyelinase. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2016;310(8):L720–L732.
    1. Qiaoli S, Yi S, Jie Z, Deyun C. KLF2 and caveolin-1 as early indicators of acute lung injury induced by paraquat. European Review for Medical and Pharmacological Sciences. 2016;20(1):138–145.
    1. Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: Molecular organization and role in vascular homeostasis. Physiological Reviews. 2004;84(3):869–901. doi: 10.1152/physrev.00035.2003.
    1. Navarro P, Ruco L, Dejana E. Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. The Journal of Cell Biology. 1998;140(6):1475–1484. doi: 10.1083/jcb.140.6.1475.
    1. Rudini N, Dejana E. Adherens junctions. Current Biology. 2008;18(23):R1080–R1082. doi: 10.1016/j.cub.2008.09.018.
    1. Overgaard CE, Daugherty BL, Mitchell LA, Koval M. Claudins: Control of barrier function and regulation in response to oxidant stress. Antioxidants & Redox Signaling. 2011;15(5):1179–1193. doi: 10.1089/ars.2011.3893.
    1. Cummins PM. Occludin: One protein, many forms. Molecular and Cellular Biology. 2012;32(2):242–250. doi: 10.1128/MCB.06029-11.
    1. Garrido-Urbani S, Bradfield PF, Imhof BA. Tight junction dynamics: The role of junctional adhesion molecules (JAMs) Cell and Tissue Research. 2014;355(3):701–715. doi: 10.1007/s00441-014-1820-1.
    1. Aurrand-Lions M, Johnson-Leger C, Wong C, Du Pasquier L, Imhof BA. Heterogeneity of endothelial junctions is reflected by differential expression and specific subcellular localization of the three JAM family members. Blood. 2001;98(13):3699–3707. doi: 10.1182/blood.V98.13.3699.
    1. van Wetering S, van Buul JD, Quik S, Mul FP, Anthony EC, ten Klooster JP, et al. Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. Journal of Cell Science. 2002;115(Pt 9):1837–1846.
    1. Nwariaku FE, Liu Z, Zhu X, Nahari D, Ingle C, Wu RF, et al. NADPH oxidase mediates vascular endothelial cadherin phosphorylation and endothelial dysfunction. Blood. 2004;104(10):3214–3220. doi: 10.1182/blood-2004-05-1868.
    1. Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. Journal of Cell Science. 2008;121(Pt 13):2115–2122. doi: 10.1242/jcs.017897.
    1. Wu Z, Wang Z, Dai F, Liu H, Ren W, Chang J, et al. Dephosphorylation of Y685-VE-cadherin involved in pulmonary microvascular endothelial barrier injury induced by angiotensin II. Mediators of Inflammation. 2016;2016:8696481.
    1. Tian Y, Gawlak G, O'Donnell JJ, 3rd, Birukova AA, Birukov KG. Activation of vascular endothelial growth factor (VEGF) receptor 2 mediates endothelial permeability caused by cyclic stretch. The Journal of Biological Chemistry. 2016;291(19):10032–10045. doi: 10.1074/jbc.M115.690487.
    1. Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. Journal of Cell Science. 1995;108(Pt 6):2369–2379.
    1. Monaghan-Benson E, Burridge K. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species. The Journal of Biological Chemistry. 2009;284(38):25602–25611. doi: 10.1074/jbc.M109.009894.
    1. Ukropec JA, Hollinger MK, Salva SM, Woolkalis MJ. SHP2 association with VE-cadherin complexes in human endothelial cells is regulated by thrombin. The Journal of Biological Chemistry. 2000;275(8):5983–5986. doi: 10.1074/jbc.275.8.5983.
    1. Grinnell KL, Chichger H, Braza J, Duong H, Harrington EO. Protection against LPS-induced pulmonary edema through the attenuation of protein tyrosine phosphatase-1B oxidation. American Journal of Respiratory Cell and Molecular Biology. 2012;46(5):623–632. doi: 10.1165/rcmb.2011-0271OC.
    1. Yang J, Yao W, Qian G, Wei Z, Wu G, Wang G. Rab5-mediated VE-cadherin internalization regulates the barrier function of the lung microvascular endothelium. Cellular and Molecular Life Sciences. 2015;72(24):4849–4866. doi: 10.1007/s00018-015-1973-4.
    1. McCaffrey G, Willis CL, Staatz WD, Nametz N, Quigley CA, Hom S, et al. Occludin oligomeric assemblies at tight junctions of the blood-brain barrier are altered by hypoxia and reoxygenation stress. Journal of Neurochemistry. 2009;110(1):58–71. doi: 10.1111/j.1471-4159.2009.06113.x.
    1. Maier CM, Chan PH. Role of superoxide dismutases in oxidative damage and neurodegenerative disorders. The Neuroscientist. 2002;8(4):323–334. doi: 10.1177/107385840200800408.
    1. Jang AS, Concel VJ, Bein K, Brant KA, Liu S, Pope-Varsalona H, et al. Endothelial dysfunction and claudin 5 regulation during acrolein-induced lung injury. American Journal of Respiratory Cell and Molecular Biology. 2011;44(4):483–490. doi: 10.1165/rcmb.2009-0391OC.
    1. Song MJ, Davidovich N, Lawrence GG, Margulies SS. Superoxide mediates tight junction complex dissociation in cyclically stretched lung slices. Journal of Biomechanics. 2016;49(8):1330–1335. doi: 10.1016/j.jbiomech.2015.10.032.
    1. Bellmann C, Schreivogel S, Gunther R, Dabrowski S, Schumann M, Wolburg H, et al. Highly conserved cysteines are involved in the oligomerization of occludin-redox dependency of the second extracellular loop. Antioxidants & Redox Signaling. 2014;20(6):855–867. doi: 10.1089/ars.2013.5288.
    1. Walter JK, Castro V, Voss M, Gast K, Rueckert C, Piontek J, et al. Redox-sensitivity of the dimerization of occludin. Cellular and Molecular Life Sciences. 2009;66(22):3655–3662. doi: 10.1007/s00018-009-0150-z.
    1. Kokura S, Wolf RE, Yoshikawa T, Granger DN, Aw TY. Molecular mechanisms of neutrophil-endothelial cell adhesion induced by redox imbalance. Circulation Research. 1999;84(5):516–524. doi: 10.1161/01.RES.84.5.516.
    1. Rahman I, MacNee W. Oxidative stress and regulation of glutathione in lung inflammation. The European Respiratory Journal. 2000;16(3):534–554. doi: 10.1034/j.1399-3003.2000.016003534.x.
    1. Kevil CG, Oshima T, Alexander B, Coe LL, Alexander JS. H(2)O(2)-mediated permeability: Role of MAPK and occludin. American Journal of Physiology. Cell Physiology. 2000;279(1):C21–C30.
    1. Reutershan J, Stockton R, Zarbock A, Sullivan GW, Chang D, Scott D, et al. Blocking p21-activated kinase reduces lipopolysaccharide-induced acute lung injury by preventing polymorphonuclear leukocyte infiltration. American Journal of Respiratory and Critical Care Medicine. 2007;175(10):1027–1035. doi: 10.1164/rccm.200612-1822OC.
    1. Hidaka H, Hagiwara M, Ishikawa T, Saitoh M. Role of protein phosphorylation in Ca2+ regulated intracellular messenger systems. Microcirculation, Endothelium, and Lymphatics. 1989;5(1–2):13–29.
    1. Ridley AJ. Rho GTPase signalling in cell migration. Current Opinion in Cell Biology. 2015;36:103–112. doi: 10.1016/j.ceb.2015.08.005.
    1. Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70(3):389–399. doi: 10.1016/0092-8674(92)90163-7.
    1. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. 1992;70(3):401–410. doi: 10.1016/0092-8674(92)90164-8.
    1. Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995;81(1):53–62. doi: 10.1016/0092-8674(95)90370-4.
    1. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, et al. Phosphorylation and activation of myosin by rho-associated kinase (rho-kinase) The Journal of Biological Chemistry. 1996;271(34):20246–20249. doi: 10.1074/jbc.271.34.20246.
    1. Lawson CD, Burridge K. The on-off relationship of rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases. 2014;5:e27958. doi: 10.4161/sgtp.27958.
    1. Rossi JL, Velentza AV, Steinhorn DM, Watterson DM, Wainwright MS. MLCK210 gene knockout or kinase inhibition preserves lung function following endotoxin-induced lung injury in mice. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2007;292(6):L1327–L1334. doi: 10.1152/ajplung.00380.2006.
    1. Cioffi DL, Barry C, Stevens T. Store-operated calcium entry channels in pulmonary endothelium: The emerging story of TRPCS and Orai1. Adv. Exp. Med. Biol. 2010;661:137–154. doi: 10.1007/978-1-60761-500-2_9.
    1. Lum H, Del Vecchio PJ, Schneider AS, Goligorsky MS, Malik AB. Calcium dependence of the thrombin-induced increase in endothelial albumin permeability. Journal of Applied Physiology. 1989;66(3):1471–1476. doi: 10.1063/1.344400.
    1. Malik AB, Fenton JW., 2nd Thrombin-mediated increase in vascular endothelial permeability. Seminars in Thrombosis and Hemostasis. 1992;18(2):193–199. doi: 10.1055/s-2007-1002425.
    1. Hamdollah Zadeh MA, Glass CA, Magnussen A, Hancox JC, Bates DO. VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation. 2008;15(7):605–614. doi: 10.1080/10739680802220323.
    1. Mehta D, Ahmmed GU, Paria BC, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, et al. RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. The Journal of Biological Chemistry. 2003;278(35):33492–33500. doi: 10.1074/jbc.M302401200.
    1. Villalta PC, Townsley MI. Transient receptor potential channels and regulation of lung endothelial permeability. Pulmonary Circulation. 2013;3(4):802–815. doi: 10.1086/674765.
    1. Siflinger-Birnboim A, Goligorsky MS, Del Vecchio PJ, Malik AB. Activation of protein kinase C pathway contributes to hydrogen peroxide-induced increase in endothelial permeability. Laboratory Investigation. 1992;67(1):24–30.
    1. Kuhn FJ, Heiner I, Luckhoff A. TRPM2: A calcium influx pathway regulated by oxidative stress and the novel second messenger ADP-ribose. Pflugers Archiv. 2005;451(1):212–219. doi: 10.1007/s00424-005-1446-y.
    1. Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, Schmitz C, et al. Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. The Journal of Biological Chemistry. 2005;280(7):6138–6148. doi: 10.1074/jbc.M411446200.
    1. Bogatcheva NV, Adyshev D, Mambetsariev B, Moldobaeva N, Verin AD. Involvement of microtubules, p38, and rho kinases pathway in 2-methoxyestradiol-induced lung vascular barrier dysfunction. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2007;292(2):L487–L499. doi: 10.1152/ajplung.00217.2006.
    1. Le Grand M, Rovini A, Bourgarel-Rey V, Honore S, Bastonero S, Braguer D, et al. ROS-mediated EB1 phosphorylation through Akt/GSK3beta pathway: Implication in cancer cell response to microtubule-targeting agents. Oncotarget. 2014;5(10):3408–3423. doi: 10.18632/oncotarget.1982.
    1. Harkcom WT, Ghosh AK, Sung MS, Matov A, Brown KD, Giannakakou P, et al. NAD+ and SIRT3 control microtubule dynamics and reduce susceptibility to antimicrotubule agents. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(24):E2443–E2452. doi: 10.1073/pnas.1404269111.
    1. Kratzer E, Tian Y, Sarich N, Wu T, Meliton A, Leff A, et al. Oxidative stress contributes to lung injury and barrier dysfunction via microtubule destabilization. American Journal of Respiratory Cell and Molecular Biology. 2012;47(5):688–697. doi: 10.1165/rcmb.2012-0161OC.
    1. Mirzapoiazova T, Kolosova IA, Moreno L, Sammani S, Garcia JG, Verin AD. Suppression of endotoxin-induced inflammation by taxol. The European Respiratory Journal. 2007;30(3):429–435. doi: 10.1183/09031936.00154206.
    1. Islam MS, Kabir AM, Inoue D, Sada K, Kakugo A. Enhanced dynamic instability of microtubules in a ROS free inert environment. Biophysical Chemistry. 2016;211:1–8. doi: 10.1016/j.bpc.2015.11.003.
    1. Woodfin A, Voisin MB, Nourshargh S. Recent developments and complexities in neutrophil transmigration. Current Opinion in Hematology. 2010;17(1):9–17. doi: 10.1097/MOH.0b013e3283333930.
    1. Filippi MD. Mechanism of Diapedesis: Importance of the Transcellular route. Advances in Immunology. 2016;129:25–53. doi: 10.1016/bs.ai.2015.09.001.
    1. Hafezi-Moghadam A, Thomas KL, Prorock AJ, Huo Y, Ley K. L-selectin shedding regulates leukocyte recruitment. The Journal of experimental medicine. 2001;193(7):863–872. doi: 10.1084/jem.193.7.863.
    1. Barthel SR, Gavino JD, Descheny L, Dimitroff CJ. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opinion on Therapeutic Targets. 2007;11(11):1473–1491. doi: 10.1517/14728222.11.11.1473.
    1. Zarbock A, Ley K, McEver RP, Hidalgo A. Leukocyte ligands for endothelial selectins: Specialized glycoconjugates that mediate rolling and signaling under flow. Blood. 2011;118(26):6743–6751. doi: 10.1182/blood-2011-07-343566.
    1. Griffin GK, Newton G, Tarrio ML, Bu DX, Maganto-Garcia E, Azcutia V, et al. IL-17 and TNF-alpha sustain neutrophil recruitment during inflammation through synergistic effects on endothelial activation. Journal of Immunology. 2012;188(12):6287–6299. doi: 10.4049/jimmunol.1200385.
    1. Hynes RO. Integrins: Bidirectional, allosteric signaling machines. Cell. 2002;110(6):673–687. doi: 10.1016/S0092-8674(02)00971-6.
    1. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell and Tissue Research. 2010;339(1):269–280. doi: 10.1007/s00441-009-0834-6.
    1. Zarbock A, Ley K. Mechanisms and consequences of neutrophil interaction with the endothelium. The American Journal of Pathology. 2008;172(1):1–7. doi: 10.2353/ajpath.2008.070502.
    1. Smith ML, Olson TS, Ley K. CXCR2- and E-selectin-induced neutrophil arrest during inflammation in vivo. The Journal of Experimental Medicine. 2004;200(7):935–939. doi: 10.1084/jem.20040424.
    1. Evans R, Patzak I, Svensson L, De Filippo K, Jones K, McDowall A, et al. Integrins in immunity. Journal of Cell Science. 2009;122(Pt 2):215–225. doi: 10.1242/jcs.019117.
    1. Haraldsen G, Kvale D, Lien B, Farstad IN, Brandtzaeg P. Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. Journal of Immunology. 1996;156(7):2558–2565.
    1. Muller WA. Transendothelial migration: Unifying principles from the endothelial perspective. Immunological Reviews. 2016;273(1):61–75. doi: 10.1111/imr.12443.
    1. Schmidt EP, Kuebler WM, Lee WL, Downey GP. Adhesion molecules: Master controllers of the circulatory system. Comprehensive Physiology. 2016;6(2):945–973. doi: 10.1002/cphy.c150020.
    1. Ku SK, Zhou W, Lee W, Han MS, Na M, Bae JS. Anti-inflammatory effects of hyperoside in human endothelial cells and in mice. Inflammation. 2015;38(2):784–799. doi: 10.1007/s10753-014-9989-8.
    1. Zhou X, Dai Q, Huang X. Neutrophils in acute lung injury. Frontiers in Bioscience. 2012;17:2278–2283. doi: 10.2741/4051.
    1. Natarajan R, Fisher BJ, Jones DG, Ghosh S, Fowler AA., 3rd Reoxygenating microvascular endothelium exhibits temporal dissociation of NF-kappaB and AP-1 activation. Free Radical Biology & Medicine. 2002;32(10):1033–1045. doi: 10.1016/S0891-5849(02)00813-4.
    1. Lo SK, Janakidevi K, Lai L, Malik AB. Hydrogen peroxide-induced increase in endothelial adhesiveness is dependent on ICAM-1 activation. The American Journal of Physiology. 1993;264(4 Pt 1):L406–L412.
    1. Lakshmi SP, Reddy AT, Naik MU, Naik UP, Reddy RC. Effects of JAM-A deficiency or blocking antibodies on neutrophil migration and lung injury in a murine model of ALI. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2012;303(9):L758–L766. doi: 10.1152/ajplung.00107.2012.
    1. Patel KD, Zimmerman GA, Prescott SM, McEver RP, McIntyre TM. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. The Journal of Cell Biology. 1991;112(4):749–759. doi: 10.1083/jcb.112.4.749.
    1. Ichikawa H, Flores S, Kvietys PR, Wolf RE, Yoshikawa T, Granger DN, et al. Molecular mechanisms of anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Circulation Research. 1997;81(6):922–931. doi: 10.1161/01.RES.81.6.922.
    1. Liu G, Vogel SM, Gao X, Javaid K, Hu G, Danilov SM, et al. Src phosphorylation of endothelial cell surface intercellular adhesion molecule-1 mediates neutrophil adhesion and contributes to the mechanism of lung inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology. 2011;31(6):1342–1350. doi: 10.1161/ATVBAHA.110.222208.
    1. Read MA, Whitley MZ, Williams AJ, Collins T. NF-kappa B and I kappa B alpha: An inducible regulatory system in endothelial activation. The Journal of Experimental Medicine. 1994;179(2):503–512. doi: 10.1084/jem.179.2.503.
    1. Lockyer JM, Colladay JS, Alperin-Lea WL, Hammond T, Buda AJ. Inhibition of nuclear factor-kappaB-mediated adhesion molecule expression in human endothelial cells. Circulation Research. 1998;82(3):314–320. doi: 10.1161/01.RES.82.3.314.
    1. Iademarco MF, McQuillan JJ, Rosen GD, Dean DC. Characterization of the promoter for vascular cell adhesion molecule-1 (VCAM-1) The Journal of Biological Chemistry. 1992;267(23):16323–16329.
    1. Ledebur HC, Parks TP. Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells. Essential roles of a variant NF-kappa B site and p65 homodimers. The Journal of Biological Chemistry. 1995;270(2):933–943. doi: 10.1074/jbc.270.2.933.
    1. Roebuck KA, Finnegan A. Regulation of intercellular adhesion molecule-1 (CD54) gene expression. Journal of Leukocyte Biology. 1999;66(6):876–888.
    1. Matheny HE, Deem TL, Cook-Mills JM. Lymphocyte migration through monolayers of endothelial cell lines involves VCAM-1 signaling via endothelial cell NADPH oxidase. Journal of Immunology. 2000;164(12):6550–6559. doi: 10.4049/jimmunol.164.12.6550.
    1. KSS S, Veeramohan PH, Mathew T, S S, C M. Nifedipine inhibits hypoxia induced transvascular leakage through down regulation of NFkB. Respiratory Physiology & Neurobiology. 2012;183(1):26–34. doi: 10.1016/j.resp.2012.05.016.
    1. Li XF, Ouyang B, Wu JF, Chen J, Guan XD. N-acetylcysteine (NAC) inhibited pulmonary fibrosis in acute respiratory distress syndrome (ARDS) Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2011;23(10):599–601.
    1. Mitsopoulos P, Omri A, Alipour M, Vermeulen N, Smith MG, Suntres ZE. Effectiveness of liposomal-N-acetylcysteine against LPS-induced lung injuries in rodents. International Journal of Pharmaceutics. 2008;363(1–2):106–111. doi: 10.1016/j.ijpharm.2008.07.015.
    1. Davreux CJ, Soric I, Nathens AB, Watson RW, McGilvray ID, Suntres ZE, et al. N-acetyl cysteine attenuates acute lung injury in the rat. Shock. 1997;8(6):432–438. doi: 10.1097/00024382-199712000-00007.
    1. Soltan-Sharifi MS, Mojtahedzadeh M, Najafi A, Reza Khajavi M, Reza Rouini M, Moradi M, et al. Improvement by N-acetylcysteine of acute respiratory distress syndrome through increasing intracellular glutathione, and extracellular thiol molecules and anti-oxidant power: Evidence for underlying toxicological mechanisms. Human & Experimental Toxicology. 2007;26(9):697–703. doi: 10.1177/0960327107083452.
    1. Bernard GR, Wheeler AP, Arons MM, Morris PE, Paz HL, Russell JA, et al. A trial of antioxidants N-acetylcysteine and procysteine in ARDS. The antioxidant in ARDS study group. Chest. 1997;112(1):164–172. doi: 10.1378/chest.112.1.164.
    1. Zhang RH, Li CH, Wang CL, Xu MJ, Xu T, Wei D, et al. N-acetyl-l-cystine (NAC) protects against H9N2 swine influenza virus-induced acute lung injury. International Immunopharmacology. 2014;22(1):1–8. doi: 10.1016/j.intimp.2014.06.013.
    1. Choi JS, Lee HS, Seo KH, Na JO, Kim YH, Uh ST, et al. The effect of post-treatment N-acetylcysteine in LPS-induced acute lung injury of rats. Tuberc Respir Dis (Seoul) 2012;73(1):22–31. doi: 10.4046/trd.2012.73.1.22.
    1. Ignarro LJ, Cirino G, Casini A, Napoli C. Nitric oxide as a signaling molecule in the vascular system: An overview. Journal of Cardiovascular Pharmacology. 1999;34(6):879–886. doi: 10.1097/00005344-199912000-00016.
    1. Akmal AH, Hasan M. Role of nitric oxide in management of acute respiratory distress syndrome. Annals of Thoracic Medicine. 2008;3(3):100–103. doi: 10.4103/1817-1737.41914.
    1. Hunt JL, Bronicki RA, Anas N. Role of inhaled nitric oxide in the Management of Severe Acute Respiratory Distress Syndrome. Frontiers in Pediatrics. 2016;4:74. doi: 10.3389/fped.2016.00074.
    1. Su CF, Kao SJ, Chen HI. Acute respiratory distress syndrome and lung injury: Pathogenetic mechanism and therapeutic implication. World Journal of Critical Care Medicine. 2012;1(2):50–60. doi: 10.5492/wjccm.v1.i2.50.
    1. Gebistorf F, Karam O, Wetterslev J, Afshari A. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database of Systematic Reviews. 2016;6:CD002787.
    1. Wallace JL, Wang R. Hydrogen sulfide-based therapeutics: Exploiting a unique but ubiquitous gasotransmitter. Nature Reviews. Drug Discovery. 2015;14(5):329–345. doi: 10.1038/nrd4433.
    1. Chan MV, Wallace JL. Hydrogen sulfide-based therapeutics and gastrointestinal diseases: Translating physiology to treatments. American Journal of Physiology. Gastrointestinal and Liver Physiology. 2013;305(7):G467–G473. doi: 10.1152/ajpgi.00169.2013.
    1. Du Q, Wang C, Zhang N, Li G, Zhang M, Li L, et al. In vivo study of the effects of exogenous hydrogen sulfide on lung mitochondria in acute lung injury in rats. BMC Anesthesiology. 2014;14:117. doi: 10.1186/1471-2253-14-117.
    1. Liu W, Liu K, Ma C, Yu J, Peng Z, Huang G, et al. Protective effect of hydrogen sulfide on hyperbaric hyperoxia-induced lung injury in a rat model. Undersea & Hyperbaric Medicine. 2014;41(6):573–578.
    1. Ji X, Damera K, Zheng Y, Yu B, Otterbein LE, Wang B. Toward carbon monoxide-based therapeutics: Critical drug delivery and Developability issues. Journal of Pharmaceutical Sciences. 2016;105(2):406–416. doi: 10.1016/j.xphs.2015.10.018.
    1. Gibbons SJ, Verhulst PJ, Bharucha A, Farrugia G. Review article: Carbon monoxide in gastrointestinal physiology and its potential in therapeutics. Alimentary Pharmacology & Therapeutics. 2013;38(7):689–702. doi: 10.1111/apt.12467.
    1. Sheikh SZ, Hegazi RA, Kobayashi T, Onyiah JC, Russo SM, Matsuoka K, et al. An anti-inflammatory role for carbon monoxide and heme oxygenase-1 in chronic Th2-mediated murine colitis. Journal of Immunology. 2011;186(9):5506–5513. doi: 10.4049/jimmunol.1002433.
    1. Ryter SW, Choi AM. Heme oxygenase-1/carbon monoxide: Novel therapeutic strategies in critical care medicine. Current Drug Targets. 2010;11(12):1485–1494. doi: 10.2174/1389450111009011485.
    1. Griffith B, Pendyala S, Hecker L, Lee PJ, Natarajan V, Thannickal VJ. NOX enzymes and pulmonary disease. Antioxidants & Redox Signaling. 2009;11(10):2505–2516. doi: 10.1089/ars.2009.2599.
    1. Abdelmageed ME, El-Awady MS, Suddek GM. Apocynin ameliorates endotoxin-induced acute lung injury in rats. International Immunopharmacology. 2016;30:163–170. doi: 10.1016/j.intimp.2015.12.006.
    1. Choi SH, Suh GJ, Kwon WY, Kim KS, Park MJ, Kim T, et al. Apocynin suppressed the nuclear factor-kappaB pathway and attenuated lung injury in a rat hemorrhagic shock model. Journal of Trauma and Acute Care Surgery. 2017;82(3):566–574. doi: 10.1097/TA.0000000000001337.
    1. Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G, et al. Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133(2):235–249. doi: 10.1016/j.cell.2008.02.043.
    1. Yang C, Moriuchi H, Takase J, Ishitsuka Y, Irikura M, Irie T. Oxidative stress in early stage of acute lung injury induced with oleic acid in guinea pigs. Biological & Pharmaceutical Bulletin. 2003;26(4):424–428. doi: 10.1248/bpb.26.424.
    1. Peng S, Hang N, Liu W, Guo W, Jiang C, Yang X, et al. Andrographolide sulfonate ameliorates lipopolysaccharide-induced acute lung injury in mice by down-regulating MAPK and NF-kappaB pathways. Acta Pharmaceutica Sinica B. 2016;6(3):205–211. doi: 10.1016/j.apsb.2016.02.002.
    1. Zhu T, Wang DX, Zhang W, Liao XQ, Guan X, Bo H, et al. Andrographolide protects against LPS-induced acute lung injury by inactivation of NF-kappaB. PloS One. 2013;8(2):e56407. doi: 10.1371/journal.pone.0056407.
    1. Chen T, Mou Y, Tan J, Wei L, Qiao Y, Wei T, et al. The protective effect of CDDO-me on lipopolysaccharide-induced acute lung injury in mice. International Immunopharmacology. 2015;25(1):55–64. doi: 10.1016/j.intimp.2015.01.011.
    1. Reddy NM, Suryanaraya V, Yates MS, Kleeberger SR, Hassoun PM, Yamamoto M, et al. The triterpenoid CDDO-imidazolide confers potent protection against hyperoxic acute lung injury in mice. American Journal of Respiratory and Critical Care Medicine. 2009;180(9):867–874. doi: 10.1164/rccm.200905-0670OC.
    1. Griffin JH, Fernandez JA, Gale AJ, Mosnier LO. Activated protein C. Journal of Thrombosis and Haemostasis. 2007;5(Suppl 1):73–80. doi: 10.1111/j.1538-7836.2007.02491.x.
    1. Cornet AD, Hofstra JJ, Vlaar AP, Tuinman PR, Levi M, Girbes AR, et al. Activated protein C attenuates pulmonary coagulopathy in patients with acute respiratory distress syndrome. Journal of Thrombosis and Haemostasis. 2013;11(5):894–901. doi: 10.1111/jth.12179.
    1. Cornet AD, Groeneveld AB, Hofstra JJ, Vlaar AP, Tuinman PR, van Lingen A, et al. Recombinant human activated protein C in the treatment of acute respiratory distress syndrome: A randomized clinical trial. PloS One. 2014;9(3):e90983. doi: 10.1371/journal.pone.0090983.

Source: PubMed

3
Iratkozz fel