Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality

Chi Zhang, Zhao Wu, Jia-Wen Li, Hong Zhao, Gui-Qiang Wang, Chi Zhang, Zhao Wu, Jia-Wen Li, Hong Zhao, Gui-Qiang Wang

Abstract

Since December 2019, a viral pneumonia, named coronavirus disease 2019 (COVID-19), from Wuhan, China, has swept the world. Although the case fatality rate is not high, the number of people infected is large and there is still a large number of patients dying. With the collation and publication of more and more clinical data, a large number of data suggest that there are mild or severe cytokine storms in severe patients, which is an important cause of death. Therefore, treatment of the cytokine storm has become an important part of rescuing severe COVID-19 patients. Interleukin-6 (IL-6) plays an important role in cytokine release syndrome. If it is possible to block the signal transduction pathway of IL-6, it is expected to become a new method for the treatment of severe COVID-19 patients. Tocilizumab is an IL-6 receptor (IL-6R) blocker that can effectively block the IL-6 signal transduction pathway and thus is likely to become an effective drug for patients with severe COVID-19.

Keywords: COVID-19; Cytokine release syndrome; IL-6; IL-6R; Tocilizumab.

Copyright © 2020. Published by Elsevier B.V.

Figures

Fig. 1
Fig. 1
Possible mechanism of cytokine release syndrome in severe coronavirus disease 2019 (COVID-19) patients. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects alveolar epithelial cells [mainly alveolar epithelial type 2 (AEC2) cells] through the angiotensin-converting enzyme 2 (ACE2) receptor. Destruction of epithelial cells and the increase of cell permeability lead to release of the virus. SARS-CoV-2 activates the innate immune system; macrophages and other innate immune cells not only capture the virus but also release a large number of cytokines and chemokines, including interleukin-6 (IL-6). Adaptive immunity is also activated by antigen-presenting cells (mainly dendritic cells). T- and B-cells not only play an antiviral role but also directly or indirectly promote the secretion of inflammatory cytokines. In addition, under the stimulation of inflammatory factors, a large number of inflammatory exudates and erythrocytes enter the alveoli, resulting in dyspnoea and respiratory failure.
Fig. 2
Fig. 2
Brief introduction to interleukin-6 (IL-6). CTL, cytotoxic T lymphocyte; CRS, cytokine release syndrome; COPD, chronic obstructive pulmonary disease; gp130, glycoprotein 130; IL-6R, interleukin-6 receptor.
Fig. 3
Fig. 3
Signal transduction pathways of interleukin-6 (IL-6): (A) classical signal transduction; (B) trans signal transduction; and (C) trans-presentation. (D) The next step is to activate the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway (STAT1, STAT3 and, to a lesser extent, STAT5); in addition, the RAS-RAF, SRC-YAP-NOTCH and AKT-PI3K pathways are also activated. These promote complex biological functions such as proliferation, differentiation, oxidative stress and immune regulation, etc. IL-6R, interleukin-6 receptor; gp130, glycoprotein 130; sIL-6R, soluble interleukin-6 receptor; sgp130, soluble glycoprotein 130;

References

    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020 Feb 18 doi: 10.1016/S2213-2600(20)30076-X. [Epub ahead of print]Erratum in: Lancet Respir Med 2020 Feb 25 [Epub ahead of print]. doi: 10.1016/S2213-2600(20)30085-0.
    1. Miossec P., Kolls J.K. Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discov. 2012;11:763–776.
    1. Shimabukuro-Vornhagen A., Gödel P., Subklewe M., Stemmler H.J., Schlößer H.A., Schlaak M. Cytokine release syndrome. J Immunother Cancer. 2018;6:56.
    1. Norelli M., Camisa B., Barbiera G., Falcone L., Purevdorj A., Genua M. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med. 2018;24:739–748.
    1. Teijaro J.R. Cytokine storms in infectious diseases. Semin Immunopathol. 2017;39:501–503.
    1. Chousterman B.G., Swirski F.K., Weber G.F. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39:517–528.
    1. Leiva-Juarez M.M., Kolls J.K., Evans S.E. Lung epithelial cells: therapeutically inducible effectors of antimicrobial defense. Mucosal Immunol. 2018;11:21–34.
    1. Knudsen L., Ochs M. The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochem Cell Biol. 2018;150:661–676.
    1. Brune K., Frank J., Schwingshackl A., Finigan J., Sidhaye V.K. Pulmonary epithelial barrier function: some new players and mechanisms. Am J Physiol Lung Cell Mol Physiol. 2015;308:L731–L745.
    1. Liu Q., Wang R.S., Qu G.Q., Wang Y.Y., Liu P., Zhu Y.Z. Gross examination report of a COVID-19 death autopsy. Fa Yi Xue Za Zhi [Journal of Forensic Medicine] 2020;36:19–21.
    1. Scheller J. Rose-John S. Interleukin-6 and its receptor: from bench to bedside. Med Microbiol Immunol. 2006;195:173–183.
    1. Weissenbach J., Chernajovsky Y., Zeevi M., Shulman L., Soreq H., Nir U. Two interferon mRNAs in human fibroblasts: in vitro translation and Escherichia coli cloning studies. Proc Natl Acad Sci U S A. 1980;77:7152–7156.
    1. Hunter C.A., Jones S.A. IL-6 as a keystone cytokine in health and disease. Nat Immunol. 2015;16:448–457. Erratum in: Nat Immunol 2017;18:1271.
    1. Scheller J., Garbers C., Rose-John S. Interleukin-6: from basic biology to selective blockade of pro-inflammatory activities. Semin Immunol. 2014;26:2–12.
    1. Jones S.A., Jenkins B.J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol. 2018;18:773–789.
    1. Yamasaki K., Taga T., Hirata Y., Yawata H., Kawanishi Y., Seed B. Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science. 1988;241:825–828.
    1. Baran P., Hansen S., Waetzig G.H., Akbarzadeh M., Lamertz L., Huber H.J. The balance of interleukin (IL)-6, IL-6•soluble IL-6 receptor (sIL-6R), and IL-6•sIL-6R•sgp130 complexes allows simultaneous classic and trans-signaling. J Biol Chem. 2018;293:6762–6775.
    1. Briso E.M., Dienz O., Rincon M. Cutting edge: soluble IL-6R is produced by IL-6R ectodomain shedding in activated CD4 T cells. J Immunol. 2008;180:7102–7106.
    1. Campbell I.L., Erta M., Lim S.L., Frausto R., May U., Rose-John S. Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J Neurosci. 2014;34:2503–2513.
    1. Jones S.A. Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol. 2005;175:3463–3468.
    1. Johnson D.E., O'Keefe R.A., Grandis J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–248.
    1. Villarino A.V., Kanno Y., O'Shea J.J. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol. 2017;18:374–384.
    1. Zegeye M.M., Lindkvist M., Falker K., Kumawat A.K., Paramel G., Grenegård M. Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell Commun Signal. 2018;16:55.
    1. Su H., Lei C.T., Zhang C. Interleukin-6 signaling pathway and its role in kidney disease: an update. Front Immunol. 2017;8:405.
    1. Heinrich P.C., Behrmann I., Haan S., Hermanns H.M., Müller-Newen G., Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374:1–20.
    1. Taniguchi K., Wu L.W., Grivennikov S.I., de Jong P.R., Lian I., Yu F.X. A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature. 2015;519:57–62.
    1. Yamada O., Ozaki K., Akiyama M., Kawauchi K. JAK-STAT and JAK-PI3K-mTORC1 pathways regulate telomerase transcriptionally and posttranslationally in ATL cells. Mol Cancer Ther. 2012;11:1112–1121.
    1. Thiem S., Pierce T.P., Palmieri M., Putoczki T.L., Buchert M., Preaudet A. mTORC1 inhibition restricts inflammation-associated gastrointestinal tumorigenesis in mice. J Clin Invest. 2013;123:767–781.
    1. Yasukawa K., Hirano T., Watanabe Y., Muratani K., Matsuda T., Nakai S. Structure and expression of human B cell stimulatory factor-2 (BSF-2/IL-6) gene. EMBO J. 1987;6:2939–2945.
    1. Jones B.E., Maerz M.D., Buckner J.H. IL-6: a cytokine at the crossroads of autoimmunity. Curr Opin Immunol. 2018;55:9–14.
    1. Kimura A., Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eu J Immunol. 2010;40:1830–1835.
    1. Bettelli E., Carrier Y., Gao W., Korn T., Strom T.B., Oukka M. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–238.
    1. Schmidt-Arras D., Rose-John S. IL-6 pathway in the liver: from physiopathology to therapy. J Hepatol. 2016;64:1403–1415.
    1. Fraunberger P., Wang Y., Holler E., Parhofer K.G., Nagel D., Walli A.K. Prognostic value of interleukin 6, procalcitonin, and C-reactive protein levels in intensive care unit patients during first increase of fever. Shock. 2006;26:10–12.
    1. Campard D., Vasse M., Rose-John S., Poyer F., Lamacz M., Vannier J.P. Multilevel regulation of IL-6R by IL-6–sIL-6R fusion protein according to the primitiveness of peripheral blood-derived CD133+ cells. Stem Cells. 2006;24:1302–1314.
    1. Kraakman M.J., Kammoun H.L., Allen T.L., Deswaerte V., Henstridge D.C., Estevez E. Blocking IL-6 trans-signaling prevents high-fat diet-induced adipose tissue macrophage recruitment but does not improve insulin resistance. Cell Metab. 2015;21:403–416.
    1. Qu D., Liu J., Lau C.W., Huang Y. IL-6 in diabetes and cardiovascular complications. Br J Pharmacol. 2014;171:3595–3603.
    1. Navarro G., Taroumian S., Barroso N., Duan L., Furst D. Tocilizumab in rheumatoid arthritis: a meta-analysis of efficacy and selected clinical conundrums. Semin Arthritis Rheum. 2014;43:458–469.
    1. Yokota S., Miyamae T., Imagawa T., Iwata N., Katakura S., Mori M. Therapeutic efficacy of humanized recombinant anti-interleukin-6 receptor antibody in children with systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 2005;52:818–825.
    1. Nishimoto N., Kanakura Y., Aozasa K., Johkoh T., Nakamura M., Nakano S. Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood. 2005;106:2627–2632.
    1. Ito H., Takazoe M., Fukuda Y., Hibi T., Kusugami K., Andoh A. A pilot randomized trial of a human anti-interleukin-6 receptor monoclonal antibody in active Crohn's disease. Gastroenterology. 2004;126:989–996. discussion 947.
    1. Grupp S.A., Kalos M., Barrett D., Aplenc R., Porter D.L., Rheingold S.R. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–1518.
    1. Winkler U., Jensen M., Manzke O., Schulz H., Diehl V., Engert A. Cytokine-release syndrome in patients with B-cell chronic lymphocytic leukemia and high lymphocyte counts after treatment with an anti-CD20 monoclonal antibody (rituximab, IDEC-C2B8) Blood. 1999;94:2217–2224.
    1. Genentech, Inc . Genentech, Inc.; South San Francisco, CA: 2019. Prescribing information. ACTEMRA® (tocilizumab) injection, for intravenous or subcutaneous use. [accessed 11 March 2020]
    1. Xu X.L., Han M.F., Li T.T., Sun W., Wang D.S., Fu B.Q., et al. Effective treatment of severe COVID-19 patients with tocilizumab. [accessed 11 March 2020].
    1. Novel Coronavirus Pneumonia Emergency Response Epidemiology Team The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China [in Chinese] Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41:145–151.
    1. Giles J.T., Sattar N., Gabriel S., Ridker P.M., Gay S., Warne C. Cardiovascular safety of tocilizumab versus etanercept in rheumatoid arthritis: a randomized controlled trial. Arthritis Rheumatol. 2020;72:31–40.
    1. Kim S.C., Solomon D.H., Rogers J.R., Gale S., Klearman M., Sarsour K. Cardiovascular safety of tocilizumab versus tumor necrosis factor inhibitors in patients with rheumatoid arthritis: a multi-database cohort study. Arthritis Rheumatol. 2017;69:1154–1164.
    1. Xie F., Yun H., Levitan E.B., Muntner P., Curtis J.R. Tocilizumab and the risk of cardiovascular disease: direct comparison among biologic disease-modifying antirheumatic drugs for rheumatoid arthritis patients. Arthritis Care Res. 2019;71:1004–1018.
    1. Le R.Q., Li L., Yuan W., Shord S.S., Nie L., Habtemariam B.A. FDA approval summary: tocilizumab for treatment of chimeric antigen receptor T cell-induced severe or life-threatening cytokine release syndrome. Oncologist. 2018;23:943–947.
    1. Teachey D.T., Rheingold S.R., Maude S.L., Zugmaier G., Barrett D.M., Seif A.E. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood. 2013;121:5154–5157.
    1. Castilletti C., Bordi L., Lalle E., Rozera G., Poccia F., Agrati C. Coordinate induction of IFN-α and -γ by SARS-CoV also in the absence of virus replication. Virology. 2005;341:163–169.
    1. Shi S.Q., Peng J.P., Li Y.C., Qin C., Liang G.D., Xu L. The expression of membrane protein augments the specific responses induced by SARS-CoV nucleocapsid DNA immunization. Mol Immunol. 2006;43:1791–1798.
    1. Tseng C.T., Perrone L.A., Zhu H., Makino S., Peters C.J. Severe acute respiratory syndrome and the innate immune responses: modulation of effector cell function without productive infection. J Immunol. 2005;174:7977–7985.
    1. Zheng Y., Wang Q.Y. Bioinformatics analysis on molecular mechanism of ribavirin and interferon-α in treating MERS-CoV [in Chinese] Zhonghua Liu Xing Bing Xue Za Zhi. 2016;37:291–293.
    1. The State Council of the People's Republic of China. Diagnosis and treatment protocol for novel coronavirus pneumonia (seventh edition). [accessed 12 March 2020].

Source: PubMed

3
Iratkozz fel