GDF15 is an epithelial-derived biomarker of idiopathic pulmonary fibrosis

Yingze Zhang, Mao Jiang, Mehdi Nouraie, Mark G Roth, Tracy Tabib, Spencer Winters, Xiaoping Chen, John Sembrat, Yanxia Chu, Nayra Cardenes, Rubin M Tuder, Erica L Herzog, Changwan Ryu, Mauricio Rojas, Robert Lafyatis, Kevin F Gibson, John F McDyer, Daniel J Kass, Jonathan K Alder, Yingze Zhang, Mao Jiang, Mehdi Nouraie, Mark G Roth, Tracy Tabib, Spencer Winters, Xiaoping Chen, John Sembrat, Yanxia Chu, Nayra Cardenes, Rubin M Tuder, Erica L Herzog, Changwan Ryu, Mauricio Rojas, Robert Lafyatis, Kevin F Gibson, John F McDyer, Daniel J Kass, Jonathan K Alder

Abstract

Idiopathic pulmonary fibrosis (IPF) is the most common and devastating of the interstitial lung diseases. Epithelial dysfunction is thought to play a prominent role in disease pathology, and we sought to characterize secreted signals that may contribute to disease pathology. Transcriptional profiling of senescent type II alveolar epithelial cells from mice with epithelial-specific telomere dysfunction identified the transforming growth factor-β family member, growth and differentiation factor 15 (Gdf15), as the most significantly upregulated secreted protein. Gdf15 expression is induced in response to telomere dysfunction and bleomycin challenge in mice. Gdf15 mRNA is expressed by lung epithelial cells, and protein can be detected in peripheral blood and bronchoalveolar lavage following bleomycin challenge in mice. In patients with IPF, GDF15 mRNA expression in lung tissue is significantly increased and correlates with pulmonary function. Single-cell RNA sequencing of human lungs identifies epithelial cells as the primary source of GDF15, and circulating concentrations of GDF15 are markedly elevated and correlate with disease severity and survival in multiple independent cohorts. Our findings suggest that GDF15 is an epithelial-derived secreted protein that may be a useful biomarker of epithelial stress and identifies IPF patients with poor outcomes.

Keywords: MIC-1; NAG-1; SASP; aging.

Conflict of interest statement

D. J. Kass reports collaborative research funding from Regeneron Pharmaceuticals in pulmonary hypertension, which is unrelated to this article. R. Lafyatis has received consulting fees from PRISM Biolab, Merck, Bristol Myers Squibb, Biocon, Formation, Genentech/Roche, UCB, and Sanofi and grant support from Elpidera and Regeneron, not related to the submitted work. K. F. Gibson reports membership on the advisory board of Bayer Pharmaceuticals, outside the scope of the submitted work. E. L. Herzog has received grant funding from Sanofi, Bristol Myers, and Biogen, and consulting fees from Boehringer Ingelheim, Genentech, and Merck, all unrelated to the submitted work. M. Rojas reports funding from Regeneron and MedImmune, unrelated to this work. None of the other authors has any conflicts of interest, financial or otherwise, to disclose.

Figures

Fig. 1.
Fig. 1.
Growth and differentiation factor 15 (Gdf15) is upregulated in response to telomere dysfunction. A: schematic of our analysis strategy for identifying secreted proteins from transcriptional profiling data. Transcriptional data were obtained as described previously (3). Differentially upregulated genes that were also annotated as secreted proteins are identified. B: quantitative real-time PCR for Gdf15 from sorted type II alveolar epithelial cells (AEC2s) from Trf2Fl/+Sftpc-CreER (control) and Trf2Fl/FlSftpc-CreER (senescent) AEC2s. Cells were sorted 10 days after treatment with tamoxifen based on green fluorescent protein expression from mTmG reporter allele (3). Gene expression was normalized to Hprt and B2m. C: representative images of RNA in situ hybridization staining for Gdf15 from mouse lungs 6 wk after treatment with tamoxifen showing AEC2-specific expression of Gdf15. AEC2s were identified by expression of the Sftpc transcript. Scale bar is 50 µM. D: quantitation of the colocalization of Gdf15 and Sftpc transcripts (n = 4 mice per group). E: bronchoalveolar lavage cell counts from mice treated with 2 µg of GDF15. GDF15 or sterile saline was instilled directly into the lungs and the bronchoalveolar lavage was collected thereafter at the indicated times. Total viable cells were quantitated by trypan blue staining, and a differential count was performed on >100 cells. Values are means and standard deviation (SD). Student’s t test (two-tailed) was used to compare groups.
Fig. 2.
Fig. 2.
Bleomycin induces expression of growth and differentiation factor 15 (GDF15). A and B: quantitative ELISA of GDF15 levels in bronchoalveolar lavage (BAL; A) and plasma (B) from mice treated with intratracheal bleomycin or saline. Mice were treated on day 0, and groups of 6–7 mice (at least 3 male and 3 female at each time point) were harvested at the indicated time points. C: representative RNA in situ hybridization of day 3 lungs showing alveolar expression of Gdf15. D: quantitation of colocalization of Sftpc and Gdf15 transcripts in RNA in situ hybridization staining. Values are means and SD. Student’s t test (two-tailed) was used to compare groups. ****P < 0.0001, ***P < 0.001, and **P < 0.01.
Fig. 3.
Fig. 3.
Growth and differentiation factor 15 (GDF15) is upregulated in idiopathic pulmonary fibrosis (IPF) and expressed by epithelial cells. A: box-and-whisker plot of GDF15 expression data from the Lung Genomics Research Consortium (LGRC). Horizontal line marks the median value, box boundaries show the upper and lower quartiles, and whiskers show high and low values. Relative expression was calculated from normalized hybridization signal from microarray data. Welch’s t test, two tailed, was used to compare groups. B: correlation between natural log of GDF15 expression from IPF patients and carbon monoxide diffusion capacity (DlCO) in LGRC samples (Pearson correlation = −0.24). C: violin plots of GDF15 and EPCAM (epithelial cell adhesion molecule) expression in scRNA-seq data demonstrating epithelial specific expression of GDF15 (43). Data were processed and clustered exactly as described (43). The identity of each cluster is listed in the legend on the right. D: violin plot comparing GDF15 expression in donor and IPF lungs. AEC1 and AEC2, type I and II alveolar epithelial cell, respectively; NK, natural killer.
Fig. 4.
Fig. 4.
Expression of putative growth and differentiation factor 15 (GDF15) receptors. A: Gfral expression was measured in the mouse tissues shown (n = 3 for all tissues, except medulla for which only a single sample was measured). No signal was detected in the majority of samples, except skeletal muscle and medulla. Values are means and SD. B: violin plots of TGFBR1 and TGFBR2 (transforming growth factor-β receptors I and II, respectively) in scRNA-seq data from human lungs showing macrophage predominant expression of TGFBR1 and broad expression of TGFBR2 (43). AEC1 and AEC2, type I and II alveolar epithelial cell, respectively; NK, natural killer.
Fig. 5.
Fig. 5.
Growth and differentiation factor 15 (GDF15) is expressed by honeycomb cyst epithelial cells. A: representative photomicrographs from three independent donor and idiopathic pulmonary fibrosis (IPF) lungs. Slides were stained for GDF15 (brown) and counterstained with hematoxylin. GDF15 expression is present in macrophages from healthy lungs (arrowheads) but rarely in epithelial cells. In contrast, GDF15 expression was abundant in epithelial cells (arrows) and macrophages in fibrotic lungs. Scale bar in micrographs is 2 mm and 100 μm in insets. B: GDF15 RNA in situ hybridization (RNA-ISH) in donor and IPF lungs showing epithelial-specific expression of GDF15. Scale bar is 100 μm. C: Western blot of whole lung lysate from donor and IPF lungs for proGDF15 and GAPDH as a load control. D: quantitation of proGDF15 in Western blot in C. Values are means and SD. Student’s t test, two tailed was used for comparison in D. IHC, immunohistochemistry.
Fig. 6.
Fig. 6.
Growth and differentiation factor 15 (GDF15) is a biomarker of idiopathic pulmonary fibrosis (IPF) and identifies high-risk patients. A–C: plasma levels of GDF15 in three cohorts of controls and IPF patients. GDF15 was measured using Luminex assay in cohort 1 (A) and ELISA in cohorts 2 and 3 (B and C, respectively). Values are means and SD. D and E: Kaplan-Meier graph showing the proportion of patients who were alive or transplant free as a function of time. IPF patients were split into two groups based on GDF15 level. Patients from the upper quartile were compared with the lower three quartiles. Age-adjusted P values are from Cox regression analysis. Comparisons in A, B, and C used Welch’s t test, two tailed.

References

    1. Abid SH, Malhotra V, Perry MC. Radiation-induced and chemotherapy-induced pulmonary injury. Curr Opin Oncol 13: 242–248, 2001. doi:10.1097/00001622-200107000-00006.
    1. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, Pascual G, Morris KJ, Khan S, Jin H, Dharmalingam G, Snijders AP, Carroll T, Capper D, Pritchard C, Inman GJ, Longerich T, Sansom OJ, Benitah SA, Zender L, Gil J. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15: 978–990, 2013. doi:10.1038/ncb2784.
    1. Alder JK, Barkauskas CE, Limjunyawong N, Stanley SE, Kembou F, Tuder RM, Hogan BL, Mitzner W, Armanios M. Telomere dysfunction causes alveolar stem cell failure. Proc Natl Acad Sci USA 112: 5099–5104, 2015. doi:10.1073/pnas.1504780112.
    1. Alder JK, Chen JJ, Lancaster L, Danoff S, Su SC, Cogan JD, Vulto I, Xie M, Qi X, Tuder RM, Phillips JA III, Lansdorp PM, Loyd JE, Armanios MY. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc Natl Acad Sci USA 105: 13051–13056, 2008. doi:10.1073/pnas.0804280105.
    1. Alder JK, Guo N, Kembou F, Parry EM, Anderson CJ, Gorgy AI, Walsh MF, Sussan T, Biswal S, Mitzner W, Tuder RM, Armanios M. Telomere length is a determinant of emphysema susceptibility. Am J Respir Crit Care Med 184: 904–912, 2011. doi:10.1164/rccm.201103-0520OC.
    1. Alder JK, Hanumanthu VS, Strong MA, DeZern AE, Stanley SE, Takemoto CM, Danilova L, Applegate CD, Bolton SG, Mohr DW, Brodsky RA, Casella JF, Greider CW, Jackson JB, Armanios M. Diagnostic utility of telomere length testing in a hospital-based setting. Proc Natl Acad Sci USA 115: E2358–E2365, 2018. [Erratum in Proc Natl Acad Sci USA 115: E4312, 2018.] doi:10.1073/pnas.1720427115.
    1. Alder JK, Parry EM, Yegnasubramanian S, Wagner CL, Lieblich LM, Auerbach R, Auerbach AD, Wheelan SJ, Armanios M. Telomere phenotypes in females with heterozygous mutations in the dyskeratosis congenita 1 (DKC1) gene. Hum Mutat 34: 1481–1485, 2013. doi:10.1002/humu.22397.
    1. Alder JK, Stanley SE, Wagner CL, Hamilton M, Hanumanthu VS, Armanios M. Exome sequencing identifies mutant TINF2 in a family with pulmonary fibrosis. Chest 147: 1361–1368, 2015. doi:10.1378/chest.14-1947.
    1. American Thoracic Society Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. Am J Respir Crit Care Med 161: 646–664, 2000. doi:10.1164/ajrccm.161.2.ats3-00.
    1. American Thoracic Society/European Respiratory Society American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. Am J Respir Crit Care Med 165: 277–304, 2002. doi:10.1164/ajrccm.165.2.ats01.
    1. Armanios M. Syndromes of telomere shortening. Annu Rev Genomics Hum Genet 10: 45–61, 2009. doi:10.1146/annurev-genom-082908-150046.
    1. Armanios M, Blackburn EH. The telomere syndromes. Nat Rev Genet 13: 693–704, 2012. [Erratum in Nat Rev Genet 14: 235, 2013.] doi:10.1038/nrg3246.
    1. Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, Lawson WE, Xie M, Vulto I, Phillips JA III, Lansdorp PM, Greider CW, Loyd JE. Telomerase mutations in families with idiopathic pulmonary fibrosis. N Engl J Med 356: 1317–1326, 2007. doi:10.1056/NEJMoa066157.
    1. Artz A, Butz S, Vestweber D. GDF-15 inhibits integrin activation and mouse neutrophil recruitment through the ALK-5/TGF-βRII heterodimer. Blood 128: 529–541, 2016. doi:10.1182/blood-2016-01-696617.
    1. Böttner M, Laaff M, Schechinger B, Rappold G, Unsicker K, Suter-Crazzolara C. Characterization of the rat, mouse, and human genes of growth/differentiation factor-15/macrophage inhibiting cytokine-1 (GDF-15/MIC-1). Gene 237: 105–111, 1999. doi:10.1016/S0378-1119(99)00309-1.
    1. Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM, Bardeesy N, Castrillon DH, Beach DH, Sharpless NE. Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 152: 340–351, 2013. doi:10.1016/j.cell.2012.12.010.
    1. Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8: 729–740, 2007. doi:10.1038/nrm2233.
    1. Cogan JD, Kropski JA, Zhao M, Mitchell DB, Rives L, Markin C, Garnett ET, Montgomery KH, Mason WR, McKean DF, Powers J, Murphy E, Olson LM, Choi L, Cheng DS, Blue EM, Young LR, Lancaster LH, Steele MP, Brown KK, Schwarz MI, Fingerlin TE, Schwartz DA, Lawson WE, Loyd JE, Zhao Z, Phillips JA III, Blackwell TS. Rare variants in RTEL1 are associated with familial interstitial pneumonia. Am J Respir Crit Care Med 191: 646–655, 2015. doi:10.1164/rccm.201408-1510OC.
    1. Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5: 99–118, 2010. doi:10.1146/annurev-pathol-121808-102144.
    1. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP. A DNA damage checkpoint response in telomere-initiated senescence. Nature 426: 194–198, 2003. doi:10.1038/nature02118.
    1. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dollé ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31: 722–733, 2014. doi:10.1016/j.devcel.2014.11.012.
    1. Devor DC, Bridges RJ, Pilewski JM. Pharmacological modulation of ion transport across wild-type and DeltaF508 CFTR-expressing human bronchial epithelia. Am J Physiol Cell Physiol 279: C461–C479, 2000. doi:10.1152/ajpcell.2000.279.2.C461.
    1. Dressen A, Abbas AR, Cabanski C, Reeder J, Ramalingam TR, Neighbors M, Bhangale TR, Brauer MJ, Hunkapiller J, Reeder J, Mukhyala K, Cuenco K, Tom J, Cowgill A, Vogel J, Forrest WF, Collard HR, Wolters PJ, Kropski JA, Lancaster LH, Blackwell TS, Arron JR, Yaspan BL. Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: a candidate gene sequencing study. Lancet Respir Med 6: 603–614, 2018. doi:10.1016/S2213-2600(18)30135-8.
    1. Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, Gonciarz MD, Coskun T, Hamang MJ, Sindelar DK, Ballman KK, Foltz LA, Muppidi A, Alsina-Fernandez J, Barnard GC, Tang JX, Liu X, Mao X, Siegel R, Sloan JH, Mitchell PJ, Zhang BB, Gimeno RE, Shan B, Wu X. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med 23: 1215–1219, 2017. doi:10.1038/nm.4393.
    1. Freeman CM, Martinez CH, Todt JC, Martinez FJ, Han MK, Thompson DL, McCloskey L, Curtis JL. Acute exacerbations of chronic obstructive pulmonary disease are associated with decreased CD4+ & CD8+ T cells and increased growth & differentiation factor-15 (GDF-15) in peripheral blood. Respir Res 16: 94, 2015. doi:10.1186/s12931-015-0251-1.
    1. Gamal SM, Elgengehy FT, Kamal A, El Bakry SA, Shabaan E, Elgendy A, Bassyouni IH. Growth differentiation factor-15 (GDF-15) level and relation to clinical manifestations in Egyptian systemic sclerosis patients: preliminary data. Immunol Invest 46: 703–713, 2017. doi:10.1080/08820139.2017.1360340.
    1. Guiot J, Moermans C, Henket M, Corhay JL, Louis R. Blood biomarkers in idiopathic pulmonary fibrosis. Lung 195: 273–280, 2017. doi:10.1007/s00408-017-9993-5.
    1. Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature 345: 458–460, 1990. doi:10.1038/345458a0.
    1. Hsiao EC, Koniaris LG, Zimmers-Koniaris T, Sebald SM, Huynh TV, Lee SJ. Characterization of growth-differentiation factor 15, a transforming growth factor beta superfamily member induced following liver injury. Mol Cell Biol 20: 3742–3751, 2000. doi:10.1128/MCB.20.10.3742-3751.2000.
    1. Hsu JY, Crawley S, Chen M, Ayupova DA, Lindhout DA, Higbee J, Kutach A, Joo W, Gao Z, Fu D, To C, Mondal K, Li B, Kekatpure A, Wang M, Laird T, Horner G, Chan J, McEntee M, Lopez M, Lakshminarasimhan D, White A, Wang SP, Yao J, Yie J, Matern H, Solloway M, Haldankar R, Parsons T, Tang J, Shen WD, Alice Chen Y, Tian H, Allan BB. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature 550: 255–259, 2017. [Erratum in Nature 551: 398, 2017.] doi:10.1038/nature24042.
    1. Husebø GR, Grønseth R, Lerner L, Gyuris J, Hardie JA, Bakke PS, Eagan TM. Growth differentiation factor-15 is a predictor of important disease outcomes in patients with COPD. Eur Respir J 49: 1601298, 2017. doi:10.1183/13993003.01298-2016.
    1. Johnen H, Lin S, Kuffner T, Brown DA, Tsai VW, Bauskin AR, Wu L, Pankhurst G, Jiang L, Junankar S, Hunter M, Fairlie WD, Lee NJ, Enriquez RF, Baldock PA, Corey E, Apple FS, Murakami MM, Lin EJ, Wang C, During MJ, Sainsbury A, Herzog H, Breit SN. Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat Med 13: 1333–1340, 2007. doi:10.1038/nm1677.
    1. Kastritis E, Papassotiriou I, Merlini G, Milani P, Terpos E, Basset M, Akalestos A, Russo F, Psimenou E, Apostolakou F, Roussou M, Gavriatopoulou M, Eleutherakis-Papaiakovou E, Fotiou D, Ziogas DC, Papadopoulou E, Pamboucas C, Dimopoulos MA, Palladini G. Growth differentiation factor-15 is a new biomarker for survival and renal outcomes in light chain amyloidosis. Blood 131: 1568–1575, 2018. doi:10.1182/blood-2017-12-819904.
    1. Kempf T, Zarbock A, Widera C, Butz S, Stadtmann A, Rossaint J, Bolomini-Vittori M, Korf-Klingebiel M, Napp LC, Hansen B, Kanwischer A, Bavendiek U, Beutel G, Hapke M, Sauer MG, Laudanna C, Hogg N, Vestweber D, Wollert KC. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med 17: 581–588, 2011. doi:10.1038/nm.2354.
    1. Kim M, Cha SI, Choi KJ, Shin KM, Lim JK, Yoo SS, Lee J, Lee SY, Kim CH, Park JY, Yang DH. Prognostic value of serum growth differentiation factor-15 in patients with chronic obstructive pulmonary disease exacerbation. Tuberc Respir Dis (Seoul) 77: 243–250, 2014. doi:10.4046/trd.2014.77.6.243.
    1. Koo BK, Um SH, Seo DS, Joo SK, Bae JM, Park JH, Chang MS, Kim JH, Lee J, Jeong WI, Kim W. Growth differentiation factor 15 predicts advanced fibrosis in biopsy-proven non-alcoholic fatty liver disease. Liver Int 38: 695–705, 2018. doi:10.1111/liv.13587.
    1. Lambrecht S, Smith V, De Wilde K, Coudenys J, Decuman S, Deforce D, De Keyser F, Elewaut D. Growth differentiation factor 15, a marker of lung involvement in systemic sclerosis, is involved in fibrosis development but is not indispensable for fibrosis development. Arthritis Rheumatol 66: 418–427, 2014. doi:10.1002/art.38241.
    1. Lee ES, Kim SH, Kim HJ, Kim KH, Lee BS, Ku BJ. Growth differentiation factor 15 predicts chronic liver disease severity. Gut Liver 11: 276–282, 2017. doi:10.5009/gnl16049.
    1. Magnussen C, Blankenberg S. Biomarkers for heart failure: small molecules with high clinical relevance. J Intern Med 283: 530–543, 2018. doi:10.1111/joim.12756.
    1. Martinez CH, Freeman CM, Nelson JD, Murray S, Wang X, Budoff MJ, Dransfield MT, Hokanson JE, Kazerooni EA, Kinney GL, Regan EA, Wells JM, Martinez FJ, Han MK, Curtis JL; COPDGene Investigators . GDF-15 plasma levels in chronic obstructive pulmonary disease are associated with subclinical coronary artery disease. Respir Res 18: 42, 2017. doi:10.1186/s12931-017-0521-1.
    1. Mathai SK, Newton CA, Schwartz DA, Garcia CK. Pulmonary fibrosis in the era of stratified medicine. Thorax 71: 1154–1160, 2016. doi:10.1136/thoraxjnl-2016-209172.
    1. Meadows CA, Risbano MG, Zhang L, Geraci MW, Tuder RM, Collier DH, Bull TM. Increased expression of growth differentiation factor-15 in systemic sclerosis-associated pulmonary arterial hypertension. Chest 139: 994–1002, 2011. doi:10.1378/chest.10-0302.
    1. Morse C, Tabib T, Sembrat J, Buschur KL, Bittar HT, Valenzi E, Jiang Y, Kass DJ, Gibson K, Chen W, Mora A, Benos PV, Rojas M, Lafyatis R. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur Respir J 54: 1802441, 2019. doi:10.1183/13993003.02441-2018.
    1. Mullican SE, Lin-Schmidt X, Chin CN, Chavez JA, Furman JL, Armstrong AA, Beck SC, South VJ, Dinh TQ, Cash-Mason TD, Cavanaugh CR, Nelson S, Huang C, Hunter MJ, Rangwala SM. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med 23: 1150–1157, 2017. doi:10.1038/nm.4392.
    1. Osada M, Park HL, Park MJ, Liu JW, Wu G, Trink B, Sidransky D. A p53-type response element in the GDF15 promoter confers high specificity for p53 activation. Biochem Biophys Res Commun 354: 913–918, 2007. doi:10.1016/j.bbrc.2007.01.089.
    1. Petrovski S, Todd JL, Durheim MT, Wang Q, Chien JW, Kelly FL, Frankel C, Mebane CM, Ren Z, Bridgers J, Urban TJ, Malone CD, Finlen Copeland A, Brinkley C, Allen AS, O’Riordan T, McHutchison JG, Palmer SM, Goldstein DB. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. Am J Respir Crit Care Med 196: 82–93, 2017. doi:10.1164/rccm.201610-2088OC.
    1. Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE Jr, Kondoh Y, Myers J, Müller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schünemann HJ; ATS/ERS/JRS/ALAT Committee on Idiopathic Pulmonary Fibrosis . An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183: 788–824, 2011. doi:10.1164/rccm.2009-040GL.
    1. Reyfman PA, Walter JM, Joshi N, Anekalla KR, McQuattie-Pimentel AC, Chiu S, Fernandez R, Akbarpour M, Chen CI, Ren Z, Verma R, Abdala-Valencia H, Nam K, Chi M, Han S, Gonzalez-Gonzalez FJ, Soberanes S, Watanabe S, Williams KJN, Flozak AS, Nicholson TT, Morgan VK, Winter DR, Hinchcliff M, Hrusch CL, Guzy RD, Bonham CA, Sperling AI, Bag R, Hamanaka RB, Mutlu GM, Yeldandi AV, Marshall SA, Shilatifard A, Amaral LAN, Perlman H, Sznajder JI, Argento AC, Gillespie CT, Dematte J, Jain M, Singer BD, Ridge KM, Lam AP, Bharat A, Bhorade SM, Gottardi CJ, Budinger GRS, Misharin AV. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am J Respir Crit Care Med 199: 1517–1536, 2019. doi:10.1164/rccm.201712-2410OC.
    1. Ryu C, Sun H, Gulati M, Herazo-Maya JD, Chen Y, Osafo-Addo A, Brandsdorfer C, Winkler J, Blaul C, Faunce J, Pan H, Woolard T, Tzouvelekis A, Antin-Ozerkis DE, Puchalski JT, Slade M, Gonzalez AL, Bogenhagen DF, Kirillov V, Feghali-Bostwick C, Gibson K, Lindell K, Herzog RI, Dela Cruz CS, Mehal W, Kaminski N, Herzog EL, Trujillo G. Extracellular mitochondrial DNA is generated by fibroblasts and predicts death in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 196: 1571–1581, 2017. doi:10.1164/rccm.201612-2480OC.
    1. Stuart BD, Choi J, Zaidi S, Xing C, Holohan B, Chen R, Choi M, Dharwadkar P, Torres F, Girod CE, Weissler J, Fitzgerald J, Kershaw C, Klesney-Tait J, Mageto Y, Shay JW, Ji W, Bilguvar K, Mane S, Lifton RP, Garcia CK. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. Nat Genet 47: 512–517, 2015. doi:10.1038/ng.3278.
    1. Tan J, Tedrow JR, Dutta JA, Juan-Guardela B, Nouraie M, Chu Y, Trejo Bittar H, Ramani K, Biswas PS, Veraldi KL, Kaminski N, Zhang Y, Kass DJ. Expression of RXFP1 is decreased in idiopathic pulmonary fibrosis. Implications for relaxin-based therapies. Am J Respir Crit Care Med 194: 1392–1402, 2016. doi:10.1164/rccm.201509-1865OC.
    1. Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, Candia J, Zhang P, Cheung F, Fantoni G, CHI consortium, Semba RD, Ferrucci L. Plasma proteomic signature of age in healthy humans. Aging Cell 17: e12799, 2018. doi:10.1111/acel.12799.
    1. Tiwari KK, Moorthy B, Lingappan K. Role of GDF15 (growth and differentiation factor 15) in pulmonary oxygen toxicity. Toxicol In Vitro 29: 1369–1376, 2015. doi:10.1016/j.tiv.2015.05.008.
    1. Verhamme FM, Freeman CM, Brusselle GG, Bracke KR, Curtis JL. GDF-15 in pulmonary and critical care medicine. Am J Respir Cell Mol Biol 60: 621–628, 2019. doi:10.1165/rcmb.2018-0379TR.
    1. Verhamme FM, Seys LJM, De Smet EG, Provoost S, Janssens W, Elewaut D, Joos GF, Brusselle GG, Bracke KR. Elevated GDF-15 contributes to pulmonary inflammation upon cigarette smoke exposure. Mucosal Immunol 10: 1400–1411, 2017. doi:10.1038/mi.2017.3.
    1. Vuga LJ, Milosevic J, Pandit K, Ben-Yehudah A, Chu Y, Richards T, Sciurba J, Myerburg M, Zhang Y, Parwani AV, Gibson KF, Kaminski N. Cartilage oligomeric matrix protein in idiopathic pulmonary fibrosis. PLoS One 8: e83120, 2013. doi:10.1371/journal.pone.0083120.
    1. Wiklund FE, Bennet AM, Magnusson PK, Eriksson UK, Lindmark F, Wu L, Yaghoutyfam N, Marquis CP, Stattin P, Pedersen NL, Adami HO, Grönberg H, Breit SN, Brown DA. Macrophage inhibitory cytokine-1 (MIC-1/GDF15): a new marker of all-cause mortality. Aging Cell 9: 1057–1064, 2010. doi:10.1111/j.1474-9726.2010.00629.x.
    1. Wu Q, Jiang D, Chu HW. Cigarette smoke induces growth differentiation factor 15 production in human lung epithelial cells: implication in mucin over-expression. Innate Immun 18: 617–626, 2012. doi:10.1177/1753425911429837.
    1. Wu Q, Jiang D, Schaefer NR, Harmacek L, O’Connor BP, Eling T, Eickelberg O, Chu HW. Overproduction of growth differentiation factor 15 promotes human rhinovirus infection and virus-induced inflammation in the lung. Am J Physiol Lung Cell Mol Physiol 314: L514–L527, 2018. doi:10.1152/ajplung.00324.2017.
    1. Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, Wikenheiser-Brokamp KA, Perl AT, Funari VA, Gokey JJ, Stripp BR, Whitsett JA. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight 1: e90558, 2016. doi:10.1172/jci.insight.90558.
    1. Yang L, Chang CC, Sun Z, Madsen D, Zhu H, Padkjær SB, Wu X, Huang T, Hultman K, Paulsen SJ, Wang J, Bugge A, Frantzen JB, Nørgaard P, Jeppesen JF, Yang Z, Secher A, Chen H, Li X, John LM, Shan B, He Z, Gao X, Su J, Hansen KT, Yang W, Jørgensen SB. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med 23: 1158–1166, 2017. doi:10.1038/nm.4394.
    1. Zimmers TA, Jin X, Hsiao EC, McGrath SA, Esquela AF, Koniaris LG. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock 23: 543–548, 2005. doi:10.1097/01.shk.0000163393.55350.70.

Source: PubMed

3
Iratkozz fel