The Use of Pigs as a Translational Model for Studying Neurodegenerative Diseases

Brendan Hoffe, Matthew R Holahan, Brendan Hoffe, Matthew R Holahan

Abstract

In recent years, the move to study neurodegenerative disease using larger animal models with brains that are more similar to humans has gained interest. While pigs have been used for various biomedical applications and research, it has only been recently that they have been used to study neurodegenerative diseases due to their neuroanatomically similar gyrencephalic brains and similar neurophysiological processes as seen in humans. This review focuses on the use of pigs in the study of Alzheimer's disease (AD) and traumatic brain injury (TBI). AD is considered the most common neurodegenerative disease in elderly populations. Head impacts from falls are the most common form of injury in the elderly and recent literature has shown an association between repetitive head impacts and the development of AD. This review summarizes research into the pathological mechanisms underlying AD and TBI as well as the advantages and disadvantages of using pigs in the neuroscientific study of these disease processes. With the lack of successful therapeutics for neurodegenerative diseases, and an increasing elderly population, the use of pigs may provide a better translational model for understanding and treating these diseases.

Keywords: Alzheimer’s disease; large animal models; neurodegenerative diseases; porcine model; translational science; traumatic brain injury.

References

    1. Abel J. M., Gennarelli T., Segawa H. (1978). Incidence and severity of cerebral concussion in the rhesus monkey following sagittal plane angular acceleration. SAE Trans. 87, 33–35. 10.4271/780886
    1. Alberdi E., Sánchez-Gómez M. V., Cavaliere F., Pérez-Samartín A., Zugaza J. L., Trullas R., et al. (2010). Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47, 264–272. 10.1016/j.ceca.2009.12.010
    1. Andersen I. L., Boe K. E., Foerevik G., Janczak A. M., Bakken M. (2000). Behavioural evaluation of methods for assessing fear responses in weaned pigs. Appl. Anim. Behav. Sci. 69, 227–240. 10.1016/S0168-1591(00)00133-7, PMID:
    1. Arnaud L. T., Myeku N., Figueiredo-Pereira M. E. (2009). Proteasome-caspase-cathepsin sequence leading to tau pathology induced by prostaglandin J2 in neuronal cells. J. Neurochem. 110, 328–342. 10.1111/j.1471-4159.2009.06142.x, PMID:
    1. Blennow K., Brody D. L., Kochanek P. M., Levin H., McKee A., Ribbers G. M., et al. (2016). Traumatic brain injuries. Nat. Rev. Dis. Primers. 2, 1–19. 10.1038/nrdp.2016.84
    1. Braak H., Braak E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259. 10.1007/BF00308809, PMID:
    1. Bustad L. K., McClellan R. O. (1965). Use of pigs in biomedical research. Nature 208, 531–535. 10.1038/208531a0
    1. Conrad M. S., Dilger R. N., Johnson R. W. (2012). Brain growth of the domestic pig (Sus scrofa) from 2 to 24 weeks of age: a longitudinal MRI study. Dev. Neurosci. 34, 291–298. 10.1159/000339311, PMID:
    1. Cullen D. K., Harris J. P., Browne K. D., Wolf J. A., Duda J. E., Meaney D. F., et al. (2016). A porcine model of traumatic brain injury via head rotational acceleration. Methods Mol. Biol. 1462, 289–324. 10.1007/978-1-4939-3816-2_17
    1. Cumming P., Møller M., Benda K., Minuzzi L., Jakobsen S., Jensen S. B., et al. . (2007). A PET study of effects of chronic 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) on serotonin markers in Göttingen minipig brain. Synapse 61, 478–487. 10.1002/syn.20377, PMID:
    1. Cummings J. L., Morstorf T., Zhong K. (2014). Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res. Ther. 6:37. 10.1186/alzrt269, PMID:
    1. Danek M., Danek J., Araszkiewicz A. (2017). Large animal as a potential models of humans mental and behavioral disorders. Psychiatr. Pol. 51, 1009–1027. 10.12740/PP/74304, PMID:
    1. Danielsen E. H., Smith D. F., Gee A. D., Venkatachalam T. K., Hansen S. B., Hermansen F., et al. . (1999). Cerebral 6-[18F]fluoro-L-DOPA (FDOPA) metabolism in pig studied by positron emission tomography. Synapse 33, 247–258. 10.1002/(SICI)1098-2396(19990915)33:4<247::AID-SYN1>;2-6, PMID:
    1. De Calignon A., Fox L. M., Pitstick R., Carlson G. A., Bacskai B. J., Spires-Jones T. L., et al. . (2010). Caspase activation precedes and leads to tangles. Nature 464, 1201–1204. 10.1038/nature08890, PMID:
    1. Dickerson J. W., Dobbing J. (1967). Prenatal and postnatal growth and development of the central nervous system of the pig. Proc. R. Soc. Lond. Ser. B Biol. Sci. 166, 384–395. 10.1098/rspb.1967.0002
    1. Dolezalova D., Hruska-Plochan M., Bjarkam C. R., Sørensen J. C. H., Cunningham M., Weingarten D., et al. . (2014). Pig models of neurodegenerative disorders: utilization in cell replacement-based preclinical safety and efficacy studies. J. Comp. Neurol. 522, 2784–2801. 10.1002/cne.23575, PMID:
    1. Eaton S. L., Wishart T. M. (2017). Bridging the gap: large animal models in neurodegenerative research. Mamm. Genome 28, 324–337. 10.1007/s00335-017-9687-6, PMID:
    1. Eucker S. A., Smith C., Ralston J., Friess S. H., Margulies S. S. (2011). Physiological and histopathological responses following closed rotational head injury depend on direction of head motion. Exp. Neurol. 227, 79–88. 10.1016/j.expneurol.2010.09.015, PMID:
    1. Fang M., Lorke D. E., Li J., Gong X., Yew J. C. C., Yew D. T. (2005). Postnatal changes in functional activities of the pig’s brain: a combined functional magnetic resonance imaging and immunohistochemical study. Neurosignals 14, 222–233. 10.1159/000088638, PMID:
    1. Félix B., Léger M. E., Albe-Fessard D., Marcilloux J. C., Rampin O., Laplace J. P., et al. . (1999). Stereotaxic atlas of the pig brain. Brain Res. Bull. 49, 1–138. 10.1016/S0361-9230(99)00012-X, PMID:
    1. Finnie J. W. (2012). Comparative approach to understanding traumatic injury in the immature, postnatal brain of domestic animals. Aust. Vet. J. 90, 301–307. 10.1111/j.1751-0813.2012.00955.x, PMID:
    1. Fritz H. G., Walter B., Holzmayr M., Bauer R., Brodhun M., Patt S. (2005). A pig model with secondary increase of intracranial pressure after severe traumatic brain injury and temporary blood loss. J. Neurotrauma 22, 807–821. 10.1089/neu.2005.22.807, PMID:
    1. Geddes J. F., Vowles G. H., Nicoll J. A. R., Révész T. (1999). Neuronal cytoskeletal changes are an early consequence of repetitive head injury. Acta Neuropathol. 98, 171–178. 10.1007/s004010051066, PMID:
    1. Gennarelli T. A., Thibault L. E., Adams J. H., Graham D. I., Thompson C. J., Marcincin R. P. (1982). Diffuse axonal injury and traumatic coma in the primate. Ann. Neurol. 12, 564–574. 10.1002/ana.410120611, PMID:
    1. Giedd J. N., Vaituzis A. C., Hamburger S. D., Lange N., Rajapakse J. C., Kaysen D., et al. . (1996). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: ages 4–18 years. J. Comp. Neurol. 366, 223–230. 10.1002/(SICI)1096-9861(19960304)366:2<223::AID-CNE3>;2-7, PMID:
    1. Goldstein L. E., Fisher A. M., Tagge C. A., Zhang X. L., Velisek L., Sullivan J. A., et al. . (2012). Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 4:134ra60. 10.1126/scitranslmed.3003716, PMID:
    1. Gorny K. R., Presti M. F., Goerss S. J., Hwang S. C., Jang D.-P., Kim I., et al. . (2013). Measurements of RF heating during 3.0-T MRI of a pig implanted with deep brain stimulator. Magn. Reson. Imaging 31, 783–788. 10.1016/j.mri.2012.11.005, PMID:
    1. Hofman M. A. (1989). On the evolution and geometry of the brain in mammals. Prog. Neurobiol. 32, 137–158. 10.1016/0301-0082(89)90013-0, PMID:
    1. Holm I. E., Alstrup A. K. O., Luo Y. (2016). Genetically modified pig models for neurodegenerative disorders. J. Pathol. 238, 267–287. 10.1002/path.4654, PMID:
    1. Ibrahim N. G., Ralston J., Smith C., Margulies S. S. (2010). Physiological and pathological responses to head rotations in toddler piglets. J. Neurotrauma 27, 1021–1035. 10.1089/neu.2009.1212, PMID:
    1. Iqbal K., Gong C. X., Liu F. (2013). Hyperphosphorylation-induced tau oligomers. Front. Neurol. 4:112. 10.3389/fneur.2013.00112, PMID:
    1. Jakobsen J. E., Johansen M. G., Schmidt M., Liu Y., Li R., Callesen H., et al. . (2016). Expression of the Alzheimer’s disease mutations AβPP695sw and PSEN1M146I in double-transgenic Göttingen minipigs. J. Alzheimers Dis. 53, 1617–1630. 10.3233/JAD-160408, PMID:
    1. Janke C., Beck M., Stahl T., Holzer M., Brauer K., Bigl V., et al. . (1999). Phylogenetic diversity of the expression of the microtubule-associated protein tau: implications for neurodegenerative disorders. Mol. Brain Res. 68, 119–128. 10.1016/S0169-328X(99)00079-0, PMID:
    1. Johnson V. E., Stewart W., Weber M. T., Cullen D. K., Siman R., Smith D. H. (2016). SNTF immunostaining reveals previously undetected axonal pathology in traumatic brain injury. Acta Neuropathol. 131, 115–135. 10.1007/s00401-015-1506-0, PMID:
    1. Johnson V. E., Weber M. T., Xiao R., Cullen D. K., Meaney D. F., Stewart W., et al. . (2018). Mechanical disruption of the blood-brain barrier following experimental concussion. Acta Neuropathol. 135, 711–726. 10.1007/s00401-018-1824-0, PMID:
    1. Jørgensen L. M., Weikop P., Svarer C., Feng L., Keller S. H., Knudsen G. M. (2018). Cerebral serotonin release correlates with [11C]AZ10419369 PET measures of 5-HT1Breceptor binding in the pig brain. J. Cereb. Blood Flow Metab. 38, 1243–1252. 10.1177/0271678X17719390
    1. Jørgensen L. M., Weikop P., Villadsen J., Visnapuu T., Ettrup A., Hansen H. D., et al. (2016). Cerebral 5-HT release correlates with [11C]Cimbi36 PET measures of 5-HT2A receptor occupancy in the pig brain. J. Cereb. Blood Flow Metab. 37, 425–434. 10.1177/0271678X16629483
    1. Kiernan P. T., Montenigro P. H., Solomon T. M., McKee A. C. (2015). Chronic traumatic encephalopathy: a neurodegenerative consequence of repetitive traumatic brain injury. Semin. Neurol. 35, 20–28. 10.1055/s-0035-1545080
    1. Kim J. H., Kwon S. J., Stankewich M. C., Huh G. Y., Glantz S. B., Morrow J. S. (2016). Reactive protoplasmic and fibrous astrocytes contain high levels of calpain-cleaved alpha 2 spectrin. Exp. Mol. Pathol. 100, 1–7. 10.1016/j.yexmp.2015.11.005, PMID:
    1. Kim J.-S., Wang J.-H., Lemasters J. J. (2012). Mitochondrial permeability transition in rat hepatocytes after anoxia/reoxygenation: role of Ca2+-dependent mitochondrial formation of reactive oxygen species. AJP Gastrointest. Liver Physiol. 302, G723–G731. 10.1152/ajpgi.00082.2011
    1. Knickmeyer R. C., Gouttard S., Kang C., Evans D., Wilber K., Smith J. K., et al. . (2008). A structural MRI study of human brain development from birth to 2 years. J. Neurosci. 28, 12176–12182. 10.1523/JNEUROSCI.3479-08.2008, PMID:
    1. Kondo A., Shahpasand K., Mannix R., Qiu J., Moncaster J., Chen C.-H., et al. . (2015). Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature 523, 431–436. 10.1038/nature14658, PMID:
    1. Kragh P. M., Nielsen A. L., Li J., Du Y., Lin L., Schmidt M., et al. . (2009). Hemizygous minipigs produced by random gene insertion and handmade cloning express the Alzheimer’s disease-causing dominant mutation APPsw. Transgenic Res. 18, 545–558. 10.1007/s11248-009-9245-4, PMID:
    1. Kumar A., Singh A., Ekavali (2015). A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep. 67, 195–203. 10.1016/j.pharep.2014.09.004
    1. Larsen M., Bjarkam C. R., Østergaard K., West M. J., Sørensen J. C. (2004). The anatomy of the porcine subthalamic nucleus evaluated with immunohistochemistry and design-based stereology. Anat. Embryol. 208, 239–247. 10.1007/s00429-004-0395-0, PMID:
    1. Lee S. E., Hyun H., Park M. R., Choi Y., Son Y. J., Park Y. G., et al. (2017b). Production of transgenic pig as an Alzheimer’s disease model using a multi-cistronic vector system. PLoS One 12:e0177933. 10.1371/journal.pone.0177933
    1. Lee K., Kim S.-I., Lee Y., Won J. K., Park S.-H. (2017a). An autopsy proven child onset chronic traumatic encephalopathy. Exp. Neurobiol. 26, 172–177. 10.5607/en.2017.26.3.172
    1. Levitt P., Rakic P. (1980). Immunoperoxidase localization of glial fibrillary acidic protein in radial glial cells and astrocytes of the developing rhesus monkey brain. J. Comp. Neurol. 193, 815–840. 10.1002/cne.901930316, PMID:
    1. Lind N. M., Gjedde A., Moustgaard A., Olsen A. K., Jensen S. B., Jakobsen S., et al. . (2005). Behavioral response to novelty correlates with dopamine receptor availability in striatum of Göttingen minipigs. Behav. Brain Res. 164, 172–177. 10.1016/j.bbr.2005.06.008, PMID:
    1. Lind N. M., Moustgaard A., Jelsing J., Vajta G., Cumming P., Hansen A. K. (2007). The use of pigs in neuroscience: modeling brain disorders. Neurosci. Biobehav. Rev. 31, 728–751. 10.1016/j.neubiorev.2007.02.003, PMID:
    1. Lucke-Wold B. P., Turner R. C., Logsdon A. F., Bailes J. E., Huber J. D., Rosen C. L. (2014). Linking traumatic brain injury to chronic traumatic encephalopathy: identification of potential mechanisms leading to neurofibrillary tangle development. J. Neurotrauma 31, 1129–1138. 10.1089/neu.2013.3303, PMID:
    1. Ma M. (2013). Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon. Neurobiol. Dis. 60, 61–79. 10.1016/j.nbd.2013.08.010, PMID:
    1. Maccioni R. B., Cambiazo V. (1995). Role of microtubule-associated proteins in the control of microtubule assembly. Physiol. Rev. 75, 835–864. 10.1152/physrev.1995.75.4.835, PMID:
    1. Maccioni R. B., Farías G., Morales I., Navarrete L. (2010). The revitalized tau hypothesis on Alzheimer’s disease. Arch. Med. Res. 41, 226–231. 10.1016/j.arcmed.2010.03.007, PMID:
    1. Manji R. A., Ekser B., Menkis A. H., Cooper D. K. C. (2014). Bioprosthetic heart valves of the future. Xenotransplantation 21, 1–10. 10.1111/xen.12080
    1. Manley G. T., Rosenthal G., Lam M., Morabito D., Yan D., Derugin N., et al. . (2006). Controlled cortical impact in swine: pathophysiology and biomechanics. J. Neurotrauma 23, 128–139. 10.1089/neu.2006.23.128, PMID:
    1. McKee A. C., Stein T. D., Nowinski C. J., Stern R. A., Daneshvar D. H., Alvarez V. E., et al. . (2013). The spectrum of disease in chronic traumatic encephalopathy. Brain 136, 43–64. 10.1093/brain/aws307, PMID:
    1. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34, 939–939. 10.1212/WNL.34.7.939, PMID:
    1. Meese G. B., Ewbank R. (1973). The establishment and nature of the dominance hierarchy in the domesticated pig. Anim. Behav. 21, 326–334. 10.1016/S0003-3472(73)80074-0
    1. Mendl M., Held S., Byrne R. W. (2010). Pig cognition. Curr. Biol. 20, R796–R798. 10.1016/j.cub.2010.07.018, PMID:
    1. Minuzzi L., Olsen A. K., Bender D., Arnfred S., Grant R., Danielsen E. H., et al. . (2006). Quantitative autoradiography of ligands for dopamine receptors and transporters in brain of Göttingen minipig: comparison with results in vivo. Synapse 59, 211–219. 10.1002/syn.20234, PMID:
    1. Miyashita A., Hatsuta H., Kikuchi M., Nakaya A., Saito Y., Tsukie T., et al. . (2014). Genes associated with the progression of neurofibrillary tangles in Alzheimer’s disease. Transl. Psychiatry 4:e396. 10.1038/tp.2014.35, PMID:
    1. Molleman L., van den Berg P., Weissing F. J. (2014). Consistent individual differences in human social learning strategies. Nat. Commun. 5:3570. 10.1038/ncomms4570, PMID:
    1. Murphy E., Nordquist R. E., van der Staay F. J. (2014). A review of behavioural methods to study emotion and mood in pigs, Sus scrofa. Appl. Anim. Behav. Sci. 159, 9–28. 10.1016/j.applanim.2014.08.002
    1. Oddo S., Caccamo A., Shepherd J. D., Murphy M. P., Golde T. E., Kayed R., et al. . (2003). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421. 10.1016/S0896-6273(03)00434-3, PMID:
    1. Okuda M., Fujita Y., Hijikuro I., Wada M., Uemura T., Kobayashi Y., et al. . (2017). PE859, a novel curcumin derivative, inhibits amyloid-β and tau aggregation, and ameliorates cognitive dysfunction in senescence-accelerated mouse prone 8. J. Alzheimers Dis. 59, 313–328. 10.3233/JAD-161017, PMID:
    1. Omalu B. I., DeKosky S. T., Minster R. L., Kamboh M. I., Hamilton R. L., Wecht C. H. (2005). Chronic traumatic encephalopathy in a National Football League player. Neurosurgery 57, 128–133. 10.1227/01.NEU.0000163407.92769.ED, PMID:
    1. Orlowski D., Michalis A., Glud A. N., Korshøj A. R., Fitting L. M., Mikkelsen T. W., et al. . (2017). Brain tissue reaction to deep brain stimulation—a longitudinal study of DBS in the Goettingen minipig. Neuromodulation 20, 417–423. 10.1111/ner.12576, PMID:
    1. Paek S. B., Min H. K., Kim I., Knight E. J., Baek J. J., Bieber A. J., et al. . (2015). Frequency-dependent functional neuromodulatory effects on the motor network by ventral lateral thalamic deep brain stimulation in swine. NeuroImage 105, 181–188. 10.1016/j.neuroimage.2014.09.064, PMID:
    1. Palop J. J., Mucke L. (2010). Amyloid-Β-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat. Neurosci. 13, 812–818. 10.1038/nn.2583, PMID:
    1. Richer J. P., Lacoste L., Faure J. P., Hauet T., Ferrié J. C., Carretier M. (1998). Sacrococcygeal and transsacral epidural anesthesia in the laboratory pig: a model for experimental surgery. Surg. Radiol. Anat. 20, 431–435. 10.1007/BF01653136, PMID:
    1. Roth J. A., Tuggle C. K. (2015). Livestock models in translational medicine. ILAR J. 56, 1–6. 10.1093/ilar/ilv011, PMID:
    1. Sabri O., Sabbagh M. N., Seibyl J., Barthel H., Akatsu H., Ouchi Y., et al. . (2015). Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 11, 964–974. 10.1016/j.jalz.2015.02.004, PMID:
    1. Sarntinoranont M., Lee S. J., Hong Y., King M. A., Subhash G., Kwon J., et al. . (2012). High-strain-rate brain injury model using submerged acute rat brain tissue slices. J. Neurotrauma 29, 418–429. 10.1089/neu.2011.1772, PMID:
    1. Scheff S. W., Price D. A., Schmitt F. A., Mufson E. J. (2006). Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 27, 1372–1384. 10.1016/j.neurobiolaging.2005.09.012, PMID:
    1. Scollo A., Gottardo F., Contiero B., Edwards S. A. (2014). Does stocking density modify affective state in pigs as assessed by cognitive bias, behavioural and physiological parameters? Appl. Anim. Behav. Sci. 153, 26–35. 10.1016/j.applanim.2014.01.006
    1. Sepulveda-Diaz J. E., Alavi Naini S. M., Huynh M. B., Ouidja M. O., Yanicostas C., Chantepie S., et al. . (2015). HS3ST2 expression is critical for the abnormal phosphorylation of tau in Alzheimer’s disease-related tau pathology. Brain 138, 1339–1354. 10.1093/brain/awv056, PMID:
    1. Shu B., Zhang X., Du G., Fu Q., Huang L. (2018). MicroRNA-107 prevents amyloid-β-induced neurotoxicity and memory impairment in mice. Int. J. Mol. Med. 41, 1665–1672. 10.3892/ijmm.2017.3339, PMID:
    1. Smith D. H., Chen X. H., Nonaka M., Trojanowski J. Q., Lee V. M. Y., Saatman K. E., et al. (1999a). Accumulation of amyloid β and tau and the formation of neurofilament inclusions following diffuse brain injury in the pig. J. Neuropathol. Exp. Neurol. 58, 982–992. 10.1097/00005072-199909000-00008
    1. Smith D. H., Wolf J. A., Lusardi T. A., Lee V. M., Meaney D. F. (1999b). High tolerance and delayed elastic response of cultured axons to dynamic stretch injury. J. Neurosci. 19, 4263–4269. 10.1523/JNEUROSCI.19-11-04263.1999
    1. Søndergaard L. V., Ladewig J., Dagnæs-Hansen F., Herskin M. S., Holm I. E. (2012). Object recognition as a measure of memory in 1-2 years old transgenic minipigs carrying the APPsw mutation for Alzheimer’s disease. Transgenic Res. 21, 1341–1348. 10.1007/s11248-012-9620-4, PMID:
    1. Stamer K., Vogel R., Thies E., Mandelkow E., Mandelkow E.-M. (2002). Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J. Cell Biol. 156, 1051–1063. 10.1083/jcb.200108057, PMID:
    1. Swindle M. M., Makin A., Herron A. J., Clubb F. J., Frazier K. S. (2012). Swine as models in biomedical research and toxicology testing. Vet. Pathol. 49, 344–356. 10.1177/0300985811402846
    1. Tallinen T., Chung J. Y., Biggins J. S., Mahadevan L. (2014). Gyrification from constrained cortical expansion. Proc. Natl. Acad. Sci. USA 111, 12667–12672. 10.1073/pnas.1406015111
    1. Tang-Schomer M. D., Johnson V. E., Baas P. W., Stewart W., Smith D. H. (2012). Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp. Neurol. 233, 364–372. 10.1016/j.expneurol.2011.10.030, PMID:
    1. Tanzi R. E. (2012). The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2:a006296. 10.1101/cshperspect.a006296, PMID:
    1. Tao X. G., Shi J. H., Hao S. Y., Chen X. T., Liu B. Y. (2017). Protective effects of calpain inhibition on neurovascular unit injury through downregulating nuclear factor-κb-related inflammation during traumatic brain injury in mice. Chin. Med. J. 130, 187–198. 10.4103/0366-6999.198001, PMID:
    1. Taylor C. A., Bell J. M., Breiding M. J., Xu L. (2017). Traumatic brain injury-related emergency department visits, hospitalizations, and deaths—United States, 2007 and 2013. MMWR Surveill. Summ. 66, 1–16. 10.15585/mmwr.ss6609a1, PMID:
    1. Tu S., Okamoto S.-I., Lipton S. A., Xu H. (2014). Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol. Neurodegener. 9:48. 10.1186/1750-1326-9-48, PMID:
    1. Van Den Heuvel C., Thornton E., Vink R. (2007). Traumatic brain injury and Alzheimer’s disease: a review. Prog. Brain Res. 161, 303–316. 10.1016/S0079-6123(06)61021-2
    1. Villadsen J., Hansen H. D., Jørgensen L. M., Keller S. H., Andersen F. L., Petersen I. N., et al. . (2018). Automatic delineation of brain regions on MRI and PET images from the pig. J. Neurosci. Methods 294, 51–58. 10.1016/j.jneumeth.2017.11.008, PMID:
    1. Vink R. (2018). Large animal models of traumatic brain injury. J. Neurosci. Res. 96, 527–535. 10.1002/jnr.24079, PMID:
    1. von Reyn C. R., Spaethling J. M., Mesfin M. N., Ma M., Neumar R. W., Smith D. H., et al. . (2009). Calpain mediates proteolysis of the voltage-gated sodium channel alpha-subunit. J. Neurosci. 29, 10350–10356. 10.1523/JNEUROSCI.2339-09.2009, PMID:
    1. Wilson C. A., Doms R. W., Lee V. M.-Y. (1999). Intracellular APP processing and Aβ production in Alzheimer disease. J. Neuropathol. Exp. Neurol. 58, 787–794. 10.1097/00005072-199908000-00001, PMID:
    1. Wimo A., Jönsson L., Bond J., Prince M., Winblad B. (2013). The worldwide economic impact of dementia 2010. Alzheimers Dement. 9, 1–11. 10.1016/j.jalz.2012.11.006
    1. Winter J. D., Dorner S., Lukovic J., Fisher J. A., St. Lawrence K. S., Kassner A. (2011). Noninvasive MRI measures of microstructural and cerebrovascular changes during normal swine brain development. Pediatr. Res. 69, 418–424. 10.1203/PDR.0b013e3182110f7e, PMID:
    1. Wolf J. A., Johnson B. N., Johnson V. E., Putt M. E., Browne K. D., Mietus C. J., et al. . (2017). Concussion induces hippocampal circuitry disruption in swine. J. Neurotrauma 34, 2303–2314. 10.1089/neu.2016.4848, PMID:
    1. Xiong Y., Mahmood A., Chopp M. (2013). Animal models of traumatic brain injury. Nat. Rev. Neurosci. 14, 128–142. 10.1038/nrn3407, PMID:
    1. Yousuf M. A., Tan C., Torres-Altoro M. I., Lu F.-M., Plautz E., Zhang S., et al. . (2016). Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury. J. Neurochem. 138, 317–327. 10.1111/jnc.13620, PMID:

Source: PubMed

3
Iratkozz fel