Effect of increased water intake on plasma copeptin in healthy adults

Guillaume Lemetais, Olle Melander, Mariacristina Vecchio, Jeanne H Bottin, Sofia Enhörning, Erica T Perrier, Guillaume Lemetais, Olle Melander, Mariacristina Vecchio, Jeanne H Bottin, Sofia Enhörning, Erica T Perrier

Abstract

Purpose: Inter-individual variation in median plasma copeptin is associated with incident type 2 diabetes mellitus, progression of chronic kidney disease, and cardiovascular events. In this study, we examined whether 24-h urine osmolality was associated with plasma copeptin and whether increasing daily water intake could impact circulating plasma copeptin.

Methods: This trial was a prospective study conducted at a single investigating center. Eighty-two healthy adults (age 23.6 ± 2.9 years, BMI 22.2 ± 1.5 kg/m2, 50% female) were stratified based upon habitual daily fluid intake volumes: arm A (50-80% of EFSA dietary reference values), arm B (81-120%), and arm C (121-200%). Following a baseline visit, arms A and B increased their water intake to match arm C for a period of 6 consecutive weeks.

Results: At baseline, plasma copeptin was positively and significantly associated with 24-h urine osmolality (p = 0.002) and 24-h urine specific gravity (p = 0.003) but not with plasma osmolality (p = 0.18), 24-h urine creatinine (p = 0.09), and total fluid intake (p = 0.52). Over the 6-week follow-up, copeptin decreased significantly from 5.18 (3.3;7.4) to 3.90 (2.7;5.7) pmol/L (p = 0.012), while urine osmolality and urine specific gravity decreased from 591 ± 206 to 364 ± 117 mOsm/kg (p < 0.001) and from 1.016 ± 0.005 to 1.010 ± 0.004 (p < 0.001), respectively.

Conclusions: At baseline, circulating levels of copeptin were positively associated with 24-h urine concentration in healthy young subjects with various fluid intakes. Moreover, this study shows, for the first time, that increased water intake over 6 weeks results in an attenuation of circulating copeptin.

Clinical trial registration number: NCT02044679.

Keywords: Copeptin; Fluid intake; Hydration; Urine osmolality; Water intake.

Conflict of interest statement

This study was funded by Danone Research. GL, MV, JHB, and ETP are full-time employees of Danone Research, France. OM is occasional consultant for Danone Research but did not receive any compensation related to this study. ETP designed the study protocol. GL carried out data analysis and interpretation and wrote the manuscript. MV, JHB, OM, SE, and ETP contributed to data interpretation and reviewed the manuscript.

Figures

Fig. 1
Fig. 1
Study flow diagram
Fig. 2
Fig. 2
Association with copeptin at baseline. a Multivariable regression analysis with copeptin as the dependent variable. b 3D plot displaying the correlation between copeptin, POsm, and 24-h UOsm presented as viewed from the front (left) and from above (right). Circulating copeptin increases with increasing 24-h UOsm and POsm. The light-blue to dark-red color gradient reflects the lower to higher copeptin concentration

References

    1. Abbasi A, Corpeleijn E, Meijer E, Postmus D, Gansevoort RT, Gans ROB, Struck J, Hillege HL, Stolk RP, Navis G, Bakker SJL. Sex differences in the association between plasma copeptin and incident type 2 diabetes: the Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Diabetologia. 2012;55(7):1963–1970. doi: 10.1007/s00125-012-2545-x.
    1. Enhorning S, Wang TJ, Nilsson PM, Almgren P, Hedblad B, Berglund G, Struck J, Morgenthaler NG, Bergmann A, Lindholm E, Groop L, Lyssenko V, Orho-Melander M, Newton-Cheh C, Melander O. Plasma copeptin and the risk of diabetes mellitus. Circulation. 2010;121(19):2102–2108. doi: 10.1161/CIRCULATIONAHA.109.909663.
    1. Wannamethee SG, Welsh P, Papacosta O, Lennon L, Whincup PH, Sattar N. Copeptin, insulin resistance, and risk of incident diabetes in older men. J Clin Endocrinol Metab. 2015;100(9):3332–3339. doi: 10.1210/JC.2015-2362.
    1. Enhorning S, Struck J, Wirfalt E, Hedblad B, Morgenthaler NG, Melander O. Plasma copeptin, a unifying factor behind the metabolic syndrome. J Clin Endocrinol Metab. 2011;96(7):1065–1072. doi: 10.1210/jc.2010-2981.
    1. Saleem U, Khaleghi M, Morgenthaler NG, Bergmann A, Struck J, Mosley TH, Jr, Kullo IJ. Plasma carboxy-terminal provasopressin (copeptin): a novel marker of insulin resistance and metabolic syndrome. J Clin Endocrinol Metab. 2009;94(7):2558–2564. doi: 10.1210/jc.2008-2278.
    1. Boertien WE, Meijer E, Zittema D, van Dijk MA, Rabelink TJ, Breuning MH, Struck J, Bakker SJL, Peters DJM, de Jong PE, Gansevoort RT. Copeptin, a surrogate marker for vasopressin, is associated with kidney function decline in subjects with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2012;27(11):4131–4137. doi: 10.1093/ndt/gfs070.
    1. Meijer E, Bakker SJL, de Jong PE, van der Heide JJH, van Son WJ, Struck J, Lems SPM, Gansevoort RT. Copeptin, a surrogate marker of vasopressin, is associated with accelerated renal function decline in renal transplant recipients. Transplantation. 2009;88(4):561–567. doi: 10.1097/TP.0b013e3181b11ae4.
    1. Roussel R, Fezeu L, Marre M, Velho G, Fumeron F, Jungers P, Lantieri O, Balkau B, Bouby N, Bankir L. Comparison between copeptin and vasopressin in a population from the community and in people with chronic kidney disease. J Clin Endocrinol Metab. 2014;99(12):4656–4663. doi: 10.1210/jc.2014-2295.
    1. Roussel R, Matallah N, Bouby N, El Boustany R, Potier L, Fumeron F, Mohammedi K, Balkau B, Marre M, Bankir L. Plasma copeptin and decline in renal function in a cohort from the community: the prospective DESIR study. Am J Nephrol. 2015;42(2):107–114. doi: 10.1159/000439061.
    1. Enhorning S, Hedblad B, Nilsson PM, Engström G, Melander O. Copeptin is an independent predictor of diabetic heart disease and death. Am Heart J. 2015;169(4):549–556. doi: 10.1016/j.ahj.2014.11.020.
    1. Tasevska I, Enhorning S, Persson M, Nilsson PM, Melander O. Copeptin predicts coronary artery disease cardiovascular and total mortality. Heart. 2015;102(2):127–132. doi: 10.1136/heartjnl-2015-308183.
    1. Yalta K, Yalta T, Sivri N, Yetkin E. Copeptin and cardiovascular disease: a review of a novel neurohormone. Int J Cardiol. 2013;167(5):1750–1759. doi: 10.1016/j.ijcard.2012.12.039.
    1. Verbalis JG. Disorders of body water homeostasis. Best Pract Res Cl En. 2003;17(4):471–503. doi: 10.1016/S1521-690X(03)00049-6.
    1. Knepper MA, Kwon TH, Nielsen S. Molecular physiology of water balance. N Engl J Med. 2015;372(14):1349–1358. doi: 10.1056/NEJMra1404726.
    1. Robertson GL, Shelton RL, Athar S. The osmoregulation of vasopressin. Kidney Int. 1976;10(1):25–37. doi: 10.1038/ki.1976.76.
    1. Perrier ET, Armstrong LE, Daudon M, Kavouras S, Lafontan M, Lang F, Péronnet F, Stookey JD, Tack I, Klein A. From state to process: defining hydration. Obes Facts. 2014;7(Suppl. 2):6–12. doi: 10.1159/000360611.
    1. Armstrong LE, Johnson EC, McKenzie AL, Munoz CX. Interpreting common hydration biomarkers on the basis of solute and water excretion. Eur J Clin Nutr. 2013;67(3):249–253. doi: 10.1038/ejcn.2012.214.
    1. Robertson GL, Mahr EA, Athar S, Sinha T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J Clin Invest. 1973;52(9):2340. doi: 10.1172/JCI107423.
    1. Perrier ET, Buendia-Jimenez I, Vecchio M, Armstrong LE, Tack I, Klein A. Twenty-four-hour urine osmolality as a physiological index of adequate water intake. Dis Mark. 2015
    1. Fenske W, Stork S, Blechschmidt A, Maier SGK, Morgenthaler NG, Allolio B. Copeptin in the differential diagnosis of hyponatremia. J Clin Endocrinol Metab. 2009;94(1):123–129. doi: 10.1210/jc.2008-1426.
    1. World Medical Association World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191. doi: 10.1001/jama.2013.281053.
    1. Bottin JH, Lemetais G, Poupin M, Jimenez L, Perrier ET. Equivalence of afternoon spot and 24-h urinary hydration biomarkers in free-living healthy adults. Eur J Clin Nutr. 2016;70(8):904–907. doi: 10.1038/ejcn.2015.217.
    1. Agostoni CV, Bresson JL, Fairweather-Tait S. Scientific opinion on dietary reference values for water. EFSA J. 2010;8(3):1459.
    1. Ponte B, Pruijm M, Ackermann D, Vuistiner P, Guessous I, Ehret G, Alwan H, Youhanna S, Paccaud F, Mohaupt M, Péchère-Bertschi A, Vogt B, Burnier M, Martin P-Y, Devuyst O, Bochud M. Copeptin is associated with kidney length, renal function, and prevalence of simple cysts in a population-based study. J Am Soc Nephrol. 2014;26(6):1415–1425. doi: 10.1681/ASN.2014030260.
    1. Perrier E, Sb Vergne, Klein A, Poupin M, Rondeau P, Le Bellego L, Armstrong LE, Lang F, Stookey J, Tack I. Hydration biomarkers in free-living adults with different levels of habitual fluid consumption. Br J Nutr. 2013;109(09):1678–1687. doi: 10.1017/S0007114512003601.
    1. Armstrong LE, Johnson EC, McKenzie AL, Munoz CX. An empirical method to determine inadequacy of dietary water. Nutrition. 2015;32(1):79–82. doi: 10.1016/j.nut.2015.07.013.
    1. Borghi L, Meschi T, Amato F, Briganti A, Novarini A, Giannini A. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J Urol. 1996;155(3):839–843. doi: 10.1016/S0022-5347(01)66321-3.
    1. Clark WF, Sontrop JM, Macnab JJ, Suri RS, Moist L, Salvadori M, Garg AX. Urine volume and change in estimated GFR in a community-based cohort study. Clin J Am Soc Nephrol. 2011;6(11):2634–2641. doi: 10.2215/CJN.01990211.
    1. Sontrop JM, Dixon SN, Garg AX, Buendia-Jimenez I, Dohein O, Huang SH, Clark WF. Association between water intake, chronic kidney disease, and cardiovascular disease: a cross-sectional analysis of NHANES data. Am J Nephrol. 2013;37(5):434–442. doi: 10.1159/000350377.
    1. Ferreira-Pêgo C, Guelinckx I, Moreno LA, Kavouras SA, Gandy J, Martinez H, Bardosono S, Abdollahi M, Nasseri E, Jarosz A, Babio N, Salas-Salvado J. Total fluid intake and its determinants: cross-sectional surveys among adults in 13 countries worldwide. Eur J Nutr. 2015;54(2):35–43. doi: 10.1007/s00394-015-0943-9.
    1. Sontrop JM, Huang SH, Garg AX, Moist L, House AA, Gallo K, Clark WF. Effect of increased water intake on plasma copeptin in patients with chronic kidney disease: results from a pilot randomised controlled trial. BMJ Open. 2015;5(11):e008634. doi: 10.1136/bmjopen-2015-008634.

Source: PubMed

3
Iratkozz fel