Organ Preservation in Rectal Adenocarcinoma: a phase II randomized controlled trial evaluating 3-year disease-free survival in patients with locally advanced rectal cancer treated with chemoradiation plus induction or consolidation chemotherapy, and total mesorectal excision or nonoperative management

J Joshua Smith, Oliver S Chow, Marc J Gollub, Garrett M Nash, Larissa K Temple, Martin R Weiser, José G Guillem, Philip B Paty, Karin Avila, Julio Garcia-Aguilar, Rectal Cancer Consortium, J Joshua Smith, Oliver S Chow, Marc J Gollub, Garrett M Nash, Larissa K Temple, Martin R Weiser, José G Guillem, Philip B Paty, Karin Avila, Julio Garcia-Aguilar, Rectal Cancer Consortium

Abstract

Background: Treatment of patients with non-metastatic, locally advanced rectal cancer (LARC) includes pre-operative chemoradiation, total mesorectal excision (TME) and post-operative adjuvant chemotherapy. This trimodality treatment provides local tumor control in most patients; but almost one-third ultimately die from distant metastasis. Most survivors experience significant impairment in quality of life (QoL), due primarily to removal of the rectum. A current challenge lies in identifying patients who could safely undergo rectal preservation without sacrificing survival benefit and QoL.

Methods/design: This multi-institutional, phase II study investigates the efficacy of total neoadjuvant therapy (TNT) and selective non-operative management (NOM) in LARC. Patients with MRI-staged Stage II or III rectal cancer amenable to TME will be randomized to receive FOLFOX/CAPEOX: a) before induction neoadjuvant chemotherapy (INCT); or b) after consolidation neoadjuvant chemotherapy (CNCT), with 5-FU or capecitabine-based chemoradiation. Patients in both arms will be re-staged after completing all neoadjuvant therapy. Those with residual tumor at the primary site will undergo TME. Patients with clinical complete response (cCR) will receive non-operative management (NOM). NOM patients will be followed every 3 months for 2 years, and every 6 months thereafter. TME patients will be followed according to NCCN guidelines. All will be followed for at least 5 years from the date of surgery or--in patients treated with NOM--the last day of treatment.

Discussion: The studies published thus far on the safety of NOM in LARC have compared survival between select groups of patients with a cCR after NOM, to patients with a pathologic complete response (pCR) after TME. The current study compares 3-year disease-free survival (DFS) in an entire population of patients with LARC, including those with cCR and those with pCR. We will compare the two arms of the study with respect to organ preservation at 3 years, treatment compliance, adverse events and surgical complications. We will measure QoL in both groups. We will analyze molecular indications that may lead to more individually tailored treatments in the future. This will be the first NOM trial utilizing a regression schema for response assessment in a prospective fashion.

Trial registration: NCT02008656.

Figures

Fig. 1
Fig. 1
Trial schema. MSKCC-based multi-institutional, Phase II trial schema underway to test the feasibility of incorporating a NOM approach to the multimodality treatment of rectal cancer. This study will evaluate the 3-year DFS in LARC patients treated with CRT plus induction or consolidation chemotherapy and TME or NOM (https://clinicaltrials.gov/ct2/show/NCT02008656?term=NCT02008656&rank=1)
Fig. 2
Fig. 2
Nonoperative management trial contributors. A map of the United States is shown to demonstrate the multiple institutions involved in this described Phase II trial determining the feasibility of incorporating a NOM approach to the multimodality treatment of LARC patients
Fig. 3
Fig. 3
Clinical complete response. Endoscopic and T2-weighted MRI images, both pre- and post-treatment, are shown for a patient who has achieved a clinical complete response. Images displayed were taken from endoscopic and MRI views of an 85 year-old man who underwent capecitabine CRT followed by consolidation chemotherapy with CapeOx and was determined to achieve cCR both clinically and radiologically. In the post-treatment T2-weighted MRI image shown, the green arrow points to the prior site of the tumor
Fig. 4
Fig. 4
Near-complete response. Endoscopic and T2-weighted MRI images both pre- and post-treatment are shown for a patient who has achieved a near complete response. This is a 74-year-old man who underwent 8 cycles of induction FOLFOX followed by CRT, and achieved a near-cCR. A biopsy obtained in surveillance was determined to contain residual cancer; therefore, the patient was referred for TME
Fig. 5
Fig. 5
. Incomplete response. Endoscopic and T2-weighted MRI images both pre- and post-treatment are shown for a patient who experienced no significant response to induction chemotherapy followed by CRT. This is a 45-year-old woman who underwent 8 cycles of induction FOLFOX followed by CRT with minimal or no response. The patient was therefore referred for TME

References

    1. Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, Martus P, Tschmelitsch J, Hager E, Hess CF, Karstens J-H, Liersch T, Schmidberger H, Raab R. Preoperative versus postoperative chemoradiotherapy for rectal cancer. New Engl J Med. 2004;351:1731–1740. doi: 10.1056/NEJMoa040694.
    1. Cunningham D, Atkin W, Lenz H-J, Lynch HT, Minsky B, Nordlinger B, Starling N. Colorectal cancer. Lancet. 2010;375:1030–1047. doi: 10.1016/S0140-6736(10)60353-4.
    1. Pucciarelli S, Del Bianco P, Efficace F, Serpentini S, Capirci C, De Paoli A, Amato A, Cuicchi D, Nitti D. Patient-reported outcomes after neoadjuvant chemoradiotherapy for rectal cancer: a multicenter prospective observational study. Ann Surg. 2011;253:71–77. doi: 10.1097/SLA.0b013e3181fcb856.
    1. Bosset J-F, Collette L, Calais G, Mineur L, Maingon P, Radosevic-Jelic L, Daban A, Bardet E, Beny A, Ollier J-C. Chemotherapy with preoperative radiotherapy in rectal cancer. New Engl J Med. 2006;355:1114–1123. doi: 10.1056/NEJMoa060829.
    1. Bosset J-F, Calais G, Mineur L, Maingon P, Stojanovic-Rundic S, Bensadoun R-J, Bardet E, Beny A, Ollier J-C, Bolla M, Marchal D, Van Laethem J-L, Klein V, Giralt J, Clavère P, Glanzmann C, Cellier P, Collette L. Fluorouracil-based adjuvant chemotherapy after preoperative chemoradiotherapy in rectal cancer: long-term results of the EORTC 22921 randomised study. Lancet Oncol. 2014;15:184–190. doi: 10.1016/S1470-2045(13)70599-0.
    1. Cercek A, Goodman K, Hajj C, Weisberger E, Segan NH, Reidy-Lagunes DL, Stadler ZK, Wu AJ, Weiser MR, Paty PB, Guillem JG, Nash GM, Temple LK, Garcia-Aguilar J, Saltz B. Neoadjuvant chemotherapy first, followed by chemoradiation and then surgery, in the management of locally advanced rectal cancer. J Natl Compr Canc Netw. 2014;4:513–519.
    1. Fernández-Martos C, Pericay C, Aparicio J, Salud A, Safont M, Massuti B, Vera R, Escudero P, Maurel J, Marcuello E, Mengual JL, Saigi E, Estevan R, Mira M, Polo S, Hernandez A, Gallen M, Arias F, Serra J, Alonso V. Phase II, randomized study of concomitant chemoradiotherapy followed by surgery and adjuvant capecitabine plus oxaliplatin (CAPOX) compared with induction CAPOX followed by concomitant chemoradiotherapy and surgery in magnetic resonance imaging-defined, locally advanced rectal cancer: Grupo cancer de recto 3 study. J Clin Oncol. 2010;28:859–865. doi: 10.1200/JCO.2009.25.8541.
    1. Schrag D, Weiser MR, Goodman KA, Gonen M, Hollywood E, Cercek A, Reidy-Lagunes DL, Gollub MJ, Shia J, Guillem JG, Temple LKF, Paty PB, Saltz LB. Neoadjuvant chemotherapy without routine use of radiation therapy for patients with locally advanced rectal cancer: a pilot trial. J Clin Oncol. 2014;32:513–518. doi: 10.1200/JCO.2013.51.7904.
    1. Garcia-Aguilar J, Smith DD, Avila K, Bergsland EK, Chu P, Krieg RM. Optimal timing of surgery after chemoradiation for advanced rectal cancer: preliminary results of a multicenter, nonrandomized phase II prospective trial. Ann Surg. 2011;254:97–102. doi: 10.1097/SLA.0b013e3182196e1f.
    1. Maas M, Nelemans PJ, Valentini V, Das P, Rödel C, Kuo L-J, Calvo FA, García-Aguilar J, Glynne-Jones R, Haustermans K, Mohiuddin M, Pucciarelli S, Small W, Suárez J, Theodoropoulos G, Biondo S, Beets-Tan RGH, Beets GL. Long-term outcome in patients with a pathological complete response after chemoradiation for rectal cancer: a pooled analysis of individual patient data. Lancet Oncol. 2010;11:835–844. doi: 10.1016/S1470-2045(10)70172-8.
    1. Chang GJ, Park IJ, Eng C, You YN, Kopetz S, Overman MJ, Rodriguez-Bigas MA, Skibber JM. Exploratory analysis of adjuvant chemotherapy benefits after preoperative chemoradiotherapy and radical resection for rectal cancer. Am Soc Clin Oncol Meet Abstr. 2012;30:3556.
    1. Glynne-Jones R, Harrison M, Hughes R. Challenges in the neoadjuvant treatment of rectal cancer: balancing the risk of recurrence and quality of life. Cancer Radiother. 2013;17:675–685. doi: 10.1016/j.canrad.2013.06.043.
    1. Dindo D, Demartines N, Clavien P-A. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–213. doi: 10.1097/.
    1. Lawless JF. Statistical Models and Methods for Lifetime Data. New York: John Wiley & Sons; 1982.
    1. Edge S, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A (editors): AJCC Cancer Staging Manual, 7th Edition. New York: Springer-Verlag; 2010.
    1. Benson AB, 3rd, Bekaii-Saab T, Chan E, Chen Y-J, Choti MA, Cooper HS, Engstrom PF, Enzinger PC, Fakih MG, Fuchs CS, Grem JL, Hunt S, Leong LA, Lin E, Martin MG, May KS, Mulcahy MF, Murphy K, Rohren E, Ryan DP, Saltz L, Sharma S, Shibata D, Skibber JM, Small W, Sofocleous CT, Venook AP, Willett CG, Freedman-Cass DA, Gregory KM. Rectal cancer. J Natl Compr Canc Netw. 2012;10:1528–1564.
    1. NCCN Guidelines 1.2015 Rectal Cancer. []
    1. Peeters KCMJ, van de Velde CJH, Leer JWH, Martijn H, Junggeburt JMC, Kranenbarg EK, Steup WH, Wiggers T, Rutten HJ, Marijnen CAM. Late side effects of short-course preoperative radiotherapy combined with total mesorectal excision for rectal cancer: increased bowel dysfunction in irradiated patients--a Dutch colorectal cancer group study. J Clin Oncol. 2005;23:6199–6206. doi: 10.1200/JCO.2005.14.779.
    1. Cannon DM, Geye HM, Hartig GK, Traynor AM, Hoang T, McCulloch TM, Wiederholt PA, Chappell RJ, Harari PM. Increased local failure risk with prolonged radiation treatment time in head and neck cancer treated with concurrent chemotherapy. Head Neck. 2014;36:1120–1125. doi: 10.1002/hed.23419.
    1. Huang K, Haas-Kogan D, Weinberg V, Krieg R. Higher radiation dose with a shorter treatment duration improves outcome for locally advanced carcinoma of anal canal. World J Gastroenterol. 2007;13:895–900. doi: 10.3748/wjg.v13.i6.895.
    1. Hayden DM, Pinzon MCM, Francescatti AB, Edquist SC, Malczewski MR, Jolley JM, Brand MI, Saclarides TJ. Hospital readmission for fluid and electrolyte abnormalities following ileostomy construction: preventable or unpredictable? J Gastrointest Surg. 2013;17:298–303. doi: 10.1007/s11605-012-2073-5.

Source: PubMed

3
Iratkozz fel