Glucose-reducing effect of the ORMD-0801 oral insulin preparation in patients with uncontrolled type 1 diabetes: a pilot study

Roy Eldor, Ehud Arbit, Asher Corcos, Miriam Kidron, Roy Eldor, Ehud Arbit, Asher Corcos, Miriam Kidron

Abstract

The unpredictable behavior of uncontrolled type 1 diabetes often involves frequent swings in blood glucose levels that impact maintenance of a daily routine. An intensified insulin regimen is often unsuccessful, while other therapeutic options, such as amylin analog injections, use of continuous glucose sensors, and islet or pancreas transplantation are of limited clinical use. In efforts to provide patients with a more compliable treatment method, Oramed Pharmaceuticals tested the capacity of its oral insulin capsule (ORMD-0801, 8 mg insulin) in addressing this resistant clinical state. Eight Type I diabetes patients with uncontrolled diabetes (HbA1c: 7.5-10%) were monitored throughout the 15-day study period by means of a blind continuous glucose monitoring device. Baseline patient blood glucose behavior was monitored and recorded over a five-day pretreatment screening period. During the ensuing ten-day treatment phase, patients were asked to conduct themselves as usual and to self-administer an oral insulin capsule three times daily, just prior to meal intake. CGM data sufficient for pharmacodynamics analyses were obtained from 6 of the 8 subjects. Treatment with ORMD-0801 was associated with a significant 24.4% reduction in the frequencies of glucose readings >200 mg/dL (60.1 ± 7.9% pretreatment vs. 45.4 ± 4.9% during ORMD-0801 treatment; p = 0.023) and a significant mean 16.6% decrease in glucose area under the curve (AUC) (66055 ± 5547 mg/dL/24 hours vs. 55060 ± 3068 mg/dL/24 hours, p = 0.023), with a greater decrease during the early evening hours. In conclusion, ORMD-0801 oral insulin capsules in conjunction with subcutaneous insulin injections, well tolerated and effectively reduced glycemia throughout the day.

Trial registration: Clinicaltrials.gov NCT00867594.

Conflict of interest statement

Competing Interests: The authors have read the journal's policy and have the following conflicts: Authors RE, EA and MK are employed and hold stock options of Oramed Pharmaceuticals, the funder of this study. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Study flow diagram.
Figure 1. Study flow diagram.
Figure 2. Mean glucose concentrations before and…
Figure 2. Mean glucose concentrations before and during ORMD-0801 oral insulin support therapy.
A. Mean blood glucose levels of six Type I diabetic subjects, continuously monitored throughout the pretreatment (blue) and ORMD-0801, oral insulin-treatment (red) phases (dotted lines represent the corresponding standard errors). The greatest reduction (21.2%) is noted between 5–7pm. B. ORMD-0801 treatment was associated with a mean 16.6% decrease in glucose area under the curve (AUC) (66055±5547 mg/dL/24 hours before treatment vs. 55060±3068 mg/dL/24 hours during ORMD-0801 treatment,*- p = 0.023).

References

    1. Schade DS, Burge MR (1995) Brittle diabetes: etiology and treatment. Adv Endocrinol Metab 6: 289–319.
    1. DeFronzo RA, Simonson D, Ferrannini E (1982) Hepatic and peripheral insulin resistance: a common feature of type 2 (non-insulin-dependent) and type 1 (insulin-dependent) diabetes mellitus. Diabetologia 23: 313–319.
    1. Meyer C, Dostou JM, Welle SL, Gerich JE (2002) Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am J Physiol Endocrinol Metab 282: E419–427.
    1. Singhal P, Caumo A, Carey PE, Cobelli C, Taylor R (2002) Regulation of endogenous glucose production after a mixed meal in type 2 diabetes. Am J Physiol Endocrinol Metab 283: E275–283.
    1. Taylor R, Magnusson I, Rothman DL, Cline GW, Caumo A, et al. (1996) Direct assessment of liver glycogen storage by 13C nuclear magnetic resonance spectroscopy and regulation of glucose homeostasis after a mixed meal in normal subjects. J Clin Invest 97: 126–132.
    1. Sindelar DK, Balcom JH, Chu CA, Neal DW, Cherrington AD (1996) A comparison of the effects of selective increases in peripheral or portal insulin on hepatic glucose production in the conscious dog. Diabetes 45: 1594–1604.
    1. Felig P, Wahren J (1971) Influence of endogenous insulin secretion on splanchnic glucose and amino acid metabolism in man. J Clin Invest 50: 1702–1711.
    1. Maheux P, Chen YD, Polonsky KS, Reaven GM (1997) Evidence that insulin can directly inhibit hepatic glucose production. Diabetologia 40: 1300–1306.
    1. Bischof MG, Krssak M, Krebs M, Bernroider E, Stingl H, et al. (2001) Effects of short-term improvement of insulin treatment and glycemia on hepatic glycogen metabolism in type 1 diabetes. Diabetes 50: 392–398.
    1. DeVries JH, Eskes SA, Snoek FJ, Pouwer F, Van Ballegooie E, et al. (2002) Continuous intraperitoneal insulin infusion in patients with ‘brittle’ diabetes: favourable effects on glycaemic control and hospital stay. Diabet Med 19: 496–501.
    1. Arbit E, Kidron M (2009) Oral insulin: the rationale for this approach and current developments. J Diabetes Sci Technol 3: 562–567.

Source: PubMed

3
Iratkozz fel