Intravitreal autologous mesenchymal stem cell transplantation: a non-randomized phase I clinical trial in patients with retinitis pigmentosa

Aekkachai Tuekprakhon, Siripakorn Sangkitporn, Adisak Trinavarat, Aulia Rahmi Pawestri, Visit Vamvanij, Monchai Ruangchainikom, Panya Luksanapruksa, Phitchapa Pongpaksupasin, Areerat Khorchai, Acharaporn Dambua, Patcharaporn Boonchu, Chonlada Yodtup, Mongkol Uiprasertkul, Somchai Sangkitporn, La-Ongsri Atchaneeyasakul, Aekkachai Tuekprakhon, Siripakorn Sangkitporn, Adisak Trinavarat, Aulia Rahmi Pawestri, Visit Vamvanij, Monchai Ruangchainikom, Panya Luksanapruksa, Phitchapa Pongpaksupasin, Areerat Khorchai, Acharaporn Dambua, Patcharaporn Boonchu, Chonlada Yodtup, Mongkol Uiprasertkul, Somchai Sangkitporn, La-Ongsri Atchaneeyasakul

Abstract

Background: Retinitis pigmentosa (RP) is a progressive inherited retinal disease with great interest for finding effective treatment modalities. Stem cell-based therapy is one of the promising candidates. We aimed to investigate the safety, feasibility, and short-term efficacy of intravitreal injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) in participants with advanced stage RP.

Methods: This non-randomized phase I clinical trial enrolled 14 participants, categorized into three groups based on a single dose intravitreal BM-MSC injection of 1 × 106, 5 × 106, or 1 × 107 cells. We evaluated signs of inflammation and other adverse events (AEs). We also assessed the best corrected visual acuity (BCVA), visual field (VF), central subfield thickness (CST), and subjective experiences.

Results: During the 12-month period, we noticed several mild and transient AEs. Interestingly, we found statistically significant improvements in the BCVA compared to baseline, although they returned to the baseline at 12 months. The VF and CST were stable, indicating no remarkable disease progression. We followed 12 participants beyond the study period, ranging from 1.5 to 7 years, and observed one severe but manageable AE at year 3.

Conclusion: Intravitreal injection of BM-MSCs appears to be safe and potentially effective. All adverse events during the 12-month period required observation without any intervention. For the long-term follow-up, only one participant needed surgical treatment for a serious adverse event and the vision was restored. An enrollment of larger number of participants with less advanced RP and long-term follow-up is required to evaluate the safety and efficacy of this intervention.

Trial registration: ClinicalTrials.gov, NCT01531348 . Registered on February 10, 2012.

Keywords: Inherited retinal diseases; Mesenchymal stem cell; Phase I clinical trial; Retinitis pigmentosa (RP); Stem cell therapy.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The transparent reporting of evaluations with non-randomized design (TREND) flow diagram. The TREND flow diagram describes the number of study participants during trial enrollment, allocation, follow-up, and discontinuation of intervention of the intravitreal injection of autologous bone marrow-derived mesenchymal stem cells
Fig. 2
Fig. 2
Characteristics of bone marrow-derived mesenchymal stem cells (BM-MSCs). Representative flow cytometry histogram of mesenchymal stem cell (MSC) characteristics assessed by positive expression of CD73, CD90, and CD105 and negative expression of CD34, CD45, and HLA-DR surface markers. Cell viability was assessed by the expression of the 7-amino-actinomycin D (7-AAD). Dashed lines represent the unstained control
Fig. 3
Fig. 3
The cell numbers and flare values after the intravitreal injection of BM-MSCs. The cells and flare were evaluated daily for the first week, weekly for the first month, then monthly for the next 12 months. The graphs show the comparison of cells (a) and flare (b) in the study eyes among groups (blue, red, and green lines represent groups 1, 2, and 3, respectively). The comparison between the fellow eye (gray line) and study eye in each group (c and d for cells and flare of group 1, N = 7; e and f for group 2, N = 3; and g and h for group 3, N = 4). Error bars indicate the SD of cells and flare value in each group
Fig. 4
Fig. 4
Subjective complain during the study. The subjective complain for the safety (a) and efficacy (b) of autologous intravitreal injection of BM-MSCs during the 12-month follow-up
Fig. 5
Fig. 5
Retinal appearances during the study period. A1 Fundus montages demonstrate generalized pigmentary changes with heavy bone spicules and macular involvement. A2 and A3 images, representing months 6 and 12, respectively, show similar appearances. B1 Fundus autofluorescence images describe the central hyper-autofluorescence surrounding the island of hypo-autofluorescence in the macula, where autofluorescence indicates the presence of normal retinal pigment epithelium (RPE). B2 and B3 images represent months 6 and 12, respectively, with no remarkable changes. C1, C2, C3 The optical coherence tomography indicates central subfield thickness at baseline, month 6, and month 12, respectively. The study eye and fellow eye show similar appearances. Images were retrieved from a study participant in group 1
Fig. 6
Fig. 6
Adverse events in the study participants receiving intravitreal injection of BM-MSCs. a Slit-lamp biomicroscopy of a study participant with posterior synechiae (indicated by arrows). b After treatment with the cycloplegic agent, the posterior synechiae were released, leaving some residual pigments adhered on the lens surface (indicated by the arrow). c Optical coherence tomography imaging in a study participant at baseline and d at month 3 with mild cystoid macular edema (indicated by the arrow). e The ultra-widefield retinal imaging shows choroidal detachment (indicated by arrows) at the superotemporal periphery. f Ultrasound imaging demonstrates double-peak reflectivity (indicated by arrows) with anechoic suprachoroidal space
Fig. 7
Fig. 7
Ultra-widefield retinal image and histopathological finding of a participant with a severe adverse event. a The ultra-widefield retinal image displays the margin of retinectomy upon removing the fibrous membrane along the vitreous base temporal periphery (indicated by arrows). b Histopathological section of the membrane shows osseous metaplasia or heterotopic ossification (hematoxylin and eosin (HE) staining, magnification × 40)
Fig. 8
Fig. 8
Best corrected visual acuity (BCVA) after the intravitreal BM-MSC injection. The changes in visual acuity (logMAR) of each month were normalized to the baseline. a The comparison of the BCVA in the study eye among groups (blue, red, and green lines indicate groups 1, 2, and 3, respectively). The comparison of the BCVA between the study eye (gray line) and fellow eye of groups 1 (b), 2 (c), and 3 (d). Data represent mean of study participants from each group; group 1: N = 7, group 2: N = 3, and group 3: N = 4 (except for M12: N = 3). Error bars indicate the SD of cells and flare value in each group. Asterisks indicate the statistical significance at P value < 0.05

References

    1. Pagon RA. Retinitis pigmentosa. Surv Ophthalmol. 1988;33(3):137–177. doi: 10.1016/0039-6257(88)90085-9.
    1. Ferrari S, Di Iorio E, Barbaro V, Ponzin D, Sorrentino FS, Parmeggiani F. Retinitis pigmentosa: genes and disease mechanisms. Curr Genomics. 2011;12(4):238–249. doi: 10.2174/138920211795860107.
    1. RetNet, the Retinal Information Network (2020).
    1. Verbakel SK, van Huet RAC, Boon CJF, den Hollander AI, Collin RWJ, Klaver CCW, Hoyng CB, Roepman R, Klevering BJ. Non-syndromic retinitis pigmentosa. Prog Retin Eye Res. 2018;66:157–186. doi: 10.1016/j.preteyeres.2018.03.005.
    1. Salehi H, Amirpour N, Razavi S, Esfandiari E, Zavar R. Overview of retinal differentiation potential of mesenchymal stem cells: a promising approach for retinal cell therapy. Ann Anat. 2017;210:52–63. doi: 10.1016/j.aanat.2016.11.010.
    1. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110(10):3499–3506. doi: 10.1182/blood-2007-02-069716.
    1. Holan V, Hermankova B, Krulova M, Zajicova A. Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cells - a clue to stem cell-based therapy. World journal of stem cells. 2019;11(11):957–967. doi: 10.4252/wjsc.v11.i11.957.
    1. Svobodova E, Krulova M, Zajicova A, Pokorna K, Prochazkova J, Trosan P, Holan V. The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population. Stem Cells Dev. 2012;21(6):901–910. doi: 10.1089/scd.2011.0157.
    1. Usategui-Martin R, Puertas-Neyra K, Garcia-Gutierrez MT, Fuentes M, Pastor JC, Fernandez-Bueno I. Human mesenchymal stem cell secretome exhibits a neuroprotective effect over in vitro retinal photoreceptor degeneration. Mol Ther Methods Clin Dev. 2020;17:1155–1166. doi: 10.1016/j.omtm.2020.05.003.
    1. Otani A, Dorrell MI, Kinder K, Moreno SK, Nusinowitz S, Banin E, Heckenlively J, Friedlander M. Rescue of retinal degeneration by intravitreally injected adult bone marrow-derived lineage-negative hematopoietic stem cells. J Clin Invest. 2004;114(6):765–774. doi: 10.1172/JCI21686.
    1. Arnhold S, Absenger Y, Klein H, Addicks K, Schraermeyer U. Transplantation of bone marrow-derived mesenchymal stem cells rescue photoreceptor cells in the dystrophic retina of the rhodopsin knockout mouse. Graefes Arch Clin Exp Ophthalmol. 2007;245(3):414–422. doi: 10.1007/s00417-006-0382-7.
    1. Satarian L, Nourinia R, Safi S, Kanavi MR, Jarughi N, Daftarian N, Arab L, Aghdami N, Ahmadieh H, Baharvand H. Intravitreal injection of bone marrow mesenchymal stem cells in patients with advanced retinitis pigmentosa; a safety study. J Ophthalmic Vis Res. 2017;12(1):58–64. doi: 10.4103/2008-322X.200164.
    1. Siqueira RC, Messias A, Messias K, Arcieri RS, Ruiz MA, Souza NF, Martins LC, Jorge R. Quality of life in patients with retinitis pigmentosa submitted to intravitreal use of bone marrow-derived stem cells (Reticell-clinical trial) Stem Cell Res Ther. 2015;6:29. doi: 10.1186/s13287-015-0020-6.
    1. Park SS, Bauer G, Abedi M, Pontow S, Panorgias A, Jonnal R, Zawadzki RJ, Werner JS, Nolta J. Intravitreal autologous bone marrow CD34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Invest Ophthalmol Vis Sci. 2014;56(1):81–89. doi: 10.1167/iovs.14-15415.
    1. Tugal-Tutkun I, Yalçındağ FN, Herbort CP. Laser flare photometry and its use in uveitis. Expert Review of Ophthalmology. 2012;7(5):449–457. doi: 10.1586/eop.12.47.
    1. Sawa M (2017) Laser flare-cell photometer: principle and significance in clinical and basic ophthalmology. Jpn J Ophthalmol 61 (1):21-42. doi0.1007/s10384-016-0488-3.
    1. Liu Y, Chen SJ, Li SY, Qu LH, Meng XH, Wang Y, Xu HW, Liang ZQ, Yin ZQ. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res Ther. 2017;8(1):209. doi: 10.1186/s13287-017-0661-8.
    1. Schwartz SD, Hubschman JP, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, Mickunas E, Gay R, Klimanskaya I, Lanza R. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713–720. doi: 10.1016/S0140-6736(12)60028-2.
    1. Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y, Terada M, Nomiya Y, Tanishima S, Nakamura M, Kamao H, Sugita S, Onishi A, Ito T, Fujita K, Kawamata S, Go MJ, Shinohara C, Hata KI, Sawada M, Yamamoto M, Ohta S, Ohara Y, Yoshida K, Kuwahara J, Kitano Y, Amano N, Umekage M, Kitaoka F, Tanaka A, Okada C, Takasu N, Ogawa S, Yamanaka S, Takahashi M. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–1046. doi: 10.1056/NEJMoa1608368.
    1. Siqueira RC. Stem cell therapy in retinal diseases? Rev Bras Hematol Hemoter. 2012;34(3):222–226. doi: 10.5581/1516-8484.20120054.
    1. Musial-Wysocka A, Kot M, Majka M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant. 2019;28(7):801–812. doi: 10.1177/0963689719837897.
    1. Tang Z, Zhang Y, Wang Y, Zhang D, Shen B, Luo M, Gu P. Progress of stem/progenitor cell-based therapy for retinal degeneration. J Transl Med. 2017;15(1):99. doi: 10.1186/s12967-017-1183-y.
    1. Park KS, Bandeira E, Shelke GV, Lasser C, Lotvall J. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther. 2019;10(1):288. doi: 10.1186/s13287-019-1398-3.
    1. Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22. doi: 10.1038/s41536-019-0083-6.
    1. Özmert E, Arslan U. Management of retinitis pigmentosa by Wharton’s jelly-derived mesenchymal stem cells: prospective analysis of 1-year results. Stem Cell Res Ther. 2020;11(1):353. doi: 10.1186/s13287-020-01870-w.
    1. ÖZmert E, Arslan U. Management of retinitis pigmentosa by Wharton’s jelly derived mesenchymal stem cells: preliminary clinical results. Stem Cell Res Ther. 2020;11(1):25. doi: 10.1186/s13287-020-1549-6.
    1. Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 2005;136(1):161–169. doi: 10.1016/j.neuroscience.2005.06.062.
    1. Quigley HA, Iglesia DS. Stem cells to replace the optic nerve. Eye (Lond) 2004;18(11):1085–1088. doi: 10.1038/sj.eye.6701577.
    1. Xu W, Xu GX. Mesenchymal stem cells for retinal diseases. Int J Ophthalmol. 2011;4(4):413–421. doi: 10.3980/j.issn.2222-3959.2011.04.19.
    1. Sato H, Wada Y, Abe T, Kawamura M, Wakusawa R, Tamai M. Retinitis pigmentosa associated with ectopia lentis. Arch Ophthalmol. 2002;120(6):852–854.
    1. Hayashi K, Hayashi H, Matsuo K, Nakao F, Hayashi F. Anterior capsule contraction and intraocular lens dislocation after implant surgery in eyes with retinitis pigmentosa. Ophthalmology. 1998;105(7):1239–1243. doi: 10.1016/S0161-6420(98)97028-2.
    1. Roy S, Amin S, Roy S. Retinal fibrosis in diabetic retinopathy. Exp Eye Res. 2016;142:71–75. doi: 10.1016/j.exer.2015.04.004.
    1. Finkelstein EM, Boniuk M. Intraocular ossification and hematopoiesis. Am J Ophthalmol. 1969;68(4):683–690. doi: 10.1016/0002-9394(69)91253-7.
    1. Vemuganti GK, Honavar SG, Jalali S. Intraocular osseous metaplasia. A clinico-pathological study. Indian J Ophthalmol. 2002;50(3):183–188.
    1. Maftei C, Stanca HT. Intraocular ossification. Case report. Rom J Ophthalmol. 2017;61(1):65–68. doi: 10.22336/rjo.2017.12.
    1. Moro F. Experimental research on heterotopic intraocular ossification; structure of metaplastic bone under the polarizing microscope. Bull Histol Appl Tech Microsc. 1950;27(4):57–67.
    1. Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, Hisatomi T, Enaida H, Ishibashi T. Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology. 2013;120(1):100–105. doi: 10.1016/j.ophtha.2012.07.006.
    1. Rammal H, Entz L, Dubus M, Moniot A, Bercu NB, Sergheraert J, Gangloff SC, Mauprivez C, Kerdjoudj H. Osteoinductive material to fine-tune paracrine crosstalk of mesenchymal stem cells with endothelial cells and osteoblasts. Front Bioeng Biotechnol. 2019;7:256. doi: 10.3389/fbioe.2019.00256.
    1. Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R. Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina. 2011;31(6):1207–1214. doi: 10.1097/IAE.0b013e3181f9c242.

Source: PubMed

3
Iratkozz fel