Laparoscopic versus open gastrectomy for gastric cancer

Furong Zeng, Lang Chen, Mengting Liao, Bin Chen, Jing Long, Wei Wu, Guangtong Deng, Furong Zeng, Lang Chen, Mengting Liao, Bin Chen, Jing Long, Wei Wu, Guangtong Deng

Abstract

Background: Compared with open gastrectomy (OG), laparoscopic gastrectomy (LG) for gastric cancer has achieved rapid development and popularities in the past decades. However, lack of comprehensive analysis in long-term oncological outcomes such as recurrence and mortality hinder its full support as a valid procedure. Therefore, there are still debates on whether one of these options is superior.

Aim: To evaluate the primary and secondary outcomes of laparoscopic versus open gastrectomy for gastric cancer patients METHODS: Two authors independently extracted study data. Risk ratio (RR) with 95% confidence interval (CI) was calculated for binary outcomes, mean difference (MD) or the standardized mean difference (SMD) with 95% CI for continuous outcomes, and the hazard ratio (HR) for time-to-event outcomes. Review Manager 5.3 and STATA software were used for the meta-analysis.

Results: Seventeen randomized controlled trials (RCTs) involving 5204 participants were included in this meta-analysis. There were no differences in the primary outcomes including the number of lymph nodes harvested during operation, severe complications, short-term and long-term recurrence, and mortality. As for secondary outcomes, compared with the OG group, longer operative time was required for patients in the LG group (MD = 58.80 min, 95% CI = [45.80, 71.81], P < 0.001), but there were less intraoperative blood loss (MD = - 54.93 ml, 95% CI = [- 81.60, - 28.26], P < 0.001), less analgesic administration (frequency: MD = - 1.73, 95% CI = [- 2.21, - 1.24], P < 0.001; duration: MD = - 1.26 days, 95% CI = [- 1.40, - 1.12], P < 0.001), shorter hospital stay (MD = - 1.37 days, 95% CI = [- 2.05, - 0.70], P < 0.001), shorter time to first flatus (MD = - 0.58 days, 95% CI = [- 0.79, - 0.37], P < 0.001), ambulation (MD = - 0.50 days, 95% CI = [- 0.90, - 0.09], P = 0.02) and oral intake (MD = - 0.64 days, 95% CI = [- 1.24, - 0.03], P < 0.04), and less total complications (RR = 0.81, 95% CI = [0.71, 0.93], P = 0.003) in the OG group. There was no difference in blood transfusions (number, quantity) between these two groups. Subgroup analysis, sensitivity analysis, and the adjustment of Duval's trim and fill methods for publication bias did not change the conclusions.

Conclusion: LG was comparable to OG in the primary outcomes and had some advantages in secondary outcomes for gastric cancer patients. LG is superior to OG for gastric cancer patients.

Keywords: Gastric cancer; Laparoscopic gastrectomy (LG); Meta-analysis; Mortality; Open gastrectomy (OG); Recurrence.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flowchart of literature search and study selection process
Fig. 2
Fig. 2
Risk of bias. a Risk of bias graph. b Risk of bias summary
Fig. 3
Fig. 3
Forest plot between laparoscopy gastrectomy (LG) and open gastrectomy (OG) group on primary outcomes. a The number of lymph nodes harvested during surgery. b Severe complications. c Long-term recurrence. d Short-term mortality. e Long-term mortality
Fig. 4
Fig. 4
Forest plot between the LG and OG group on secondary outcomes. a Operative time. b Intraoperative blood loss on secondary outcomes. c Time to first flatus. d Time to first ambulation. e Time to first oral intake
Fig. 5
Fig. 5
Forest plot between the LG and OG group on secondary outcomes. a Hospital stay. b The number of patients who need blood transfusion. c The quantity of blood transfusion. d The frequency of analgesic administration. e The duration of analgesic administration. f Total complications
Fig. 6
Fig. 6
Filled funnel plot with pseudo 95% confidence limits on time to first flatus

References

    1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
    1. Collaborators GBDPC. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet Gastroenterol Hepatol. 2019;4(12):934–947.
    1. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2019. 10.1001/jamaoncol.2019.2996. [Epub ahead of print].
    1. Anderson WF, Rabkin CS, Turner N, Fraumeni JF, Jr, Rosenberg PS, Camargo MC. The changing face of noncardia gastric cancer incidence among US non-Hispanic whites. J Natl Cancer Inst. 2018;110(6):608–615.
    1. Collaborators GBDSC The global, regional, and national burden of stomach cancer in 195 countries, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet Gastroenterol Hepatol. 2020;5(1):42–54.
    1. Kitano S, Iso Y, Moriyama M, Sugimachi K. Laparoscopy-assisted Billroth I gastrectomy. Surg Laparosc Endosc. 1994;4(2):146–148.
    1. Ding J, Liao G, Yan Z, et al. Meta-analysis of proximal gastrectomy and total gastrectomy for cancer of cardia and fundus. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2011;36(6):570–575.
    1. Ding J, Liao GQ, Liu HL, Liu S, Tang J. Meta-analysis of laparoscopy-assisted distal gastrectomy with D2 lymph node dissection for gastric cancer. J Surg Oncol. 2012;105(3):297–303.
    1. Basilar artery thrombectomy: assessment of outcome and identification of prognostic factors. Acta Neurol Belg. 2019. 10.1007/s13760-019-01223-2. [Epub ahead of print].
    1. Vu LN, Nghia NQ, Thanh DT, et al. Laparoscopic living donor right nephrectomy: assessment of outcome and association of BMI to length of right renal vein. Actas Urol Esp. 2019;43(10):536–542.
    1. Kim W, Kim HH, Han SU, et al. Decreased morbidity of laparoscopic distal gastrectomy compared with open distal gastrectomy for stage I gastric cancer: short-term outcomes from a multicenter randomized controlled trial (KLASS-01) Ann Surg. 2016;263(1):28–35.
    1. Deng Y, Zhang Y, Guo TK. Laparoscopy-assisted versus open distal gastrectomy for early gastric cancer: a meta-analysis based on seven randomized controlled trials. Surg Oncol. 2015;24(2):71–77.
    1. Vinuela EF, Gonen M, Brennan MF, Coit DG, Strong VE. Laparoscopic versus open distal gastrectomy for gastric cancer: a meta-analysis of randomized controlled trials and high-quality nonrandomized studies. Ann Surg. 2012;255(3):446–456.
    1. Greco F, Wagner S, Reichelt O, et al. Huge isolated port-site recurrence after laparoscopic partial nephrectomy: a case report. Eur Urol. 2009;56(4):737–739.
    1. Lago V, Gimenez L, Matute L, et al. Port site resection after laparoscopy in advance ovarian cancer surgery: time to abandon? Surg Oncol. 2019;29:1–6.
    1. Palomba S, Mandato VD, La Sala GB. Isolated port-site metastasis after robotic hysterectomy for stage IA endometrial adenocarcinoma. Obstet Gynecol. 2014;123(3):664.
    1. Song J, Kim E, Mobley J, et al. Port site metastasis after surgery for renal cell carcinoma: harbinger of future metastasis. J Urol. 2014;192(2):364–368.
    1. Chen G, Xu X, Gong J, Zhang G, Cao Y, Zhang L. Safety and efficacy of hand-assisted laparoscopic versus open distal gastrectomy for gastric cancer: a systematic review and meta-analysis. Zhonghua Wei Chang Wai Ke Za Zhi. 2017;20(3):320–325.
    1. Zhang CD, Yamashita H, Zhang S, Seto Y. Reevaluation of laparoscopic versus open distal gastrectomy for early gastric cancer in Asia: a meta-analysis of randomized controlled trials. Int J Surg. 2018;56:31–43.
    1. Zheng XY, Pan Y, Chen K, Gao JQ, Cai XJ. Comparison of intracorporeal and extracorporeal esophagojejunostomy after laparoscopic total gastrectomy for gastric cancer: a meta-analysis based on short-term outcomes. Chin Med J. 2018;131(6):713–720.
    1. Best LM, Mughal M, Gurusamy KS. Laparoscopic versus open gastrectomy for gastric cancer. Cochrane Database Syst Rev. 2016;3:CD011389.
    1. Li H, Jiang C, Wu D, et al. The prognostic and clinicopathologic characteristics of CD147 and esophagus cancer: a meta-analysis. PLoS One. 2017;12(7):e0180271.
    1. Li H, Xi Z, Dai X, et al. CD147 and glioma: a meta-analysis. J Neuro-Oncol. 2017;134(1):145–156.
    1. Zeng F, Chen B, Zeng J, Wang Z, Xiao L, Deng G. Preoperative neutrophil-lymphocyte ratio predicts the risk of microvascular invasion in hepatocellular carcinoma: a meta-analysis. Int J Biol Markers. 2019;34(3):213–220.
    1. Cai J, Wei D, Gao CF, Zhang CS, Zhang H, Zhao T. A prospective randomized study comparing open versus laparoscopy-assisted D2 radical gastrectomy in advanced gastric cancer. Dig Surg. 2011;28(5–6):331–337.
    1. Chen Hu J, Xin Jiang L, Cai L, et al. Preliminary experience of fast-track surgery combined with laparoscopy-assisted radical distal gastrectomy for gastric cancer. J Gastrointest Surg. 2012;16(10):1830–1839.
    1. Cui M, Li Z, Xing J, et al. A prospective randomized clinical trial comparing D2 dissection in laparoscopic and open gastrectomy for gastric cancer. Med Oncol. 2015;32(10):241.
    1. Hayashi H, Ochiai T, Shimada H, Gunji Y. Prospective randomized study of open versus laparoscopy-assisted distal gastrectomy with extraperigastric lymph node dissection for early gastric cancer. Surg Endosc. 2005;19(9):1172–1176.
    1. Hu Y, Huang C, Sun Y, et al. Morbidity and mortality of laparoscopic versus open D2 distal gastrectomy for advanced gastric cancer: a randomized controlled trial. J Clin Oncol. 2016;34(12):1350–1357.
    1. Huscher CG, Mingoli A, Sgarzini G, et al. Laparoscopic versus open subtotal gastrectomy for distal gastric cancer: five-year results of a randomized prospective trial. Ann Surg. 2005;241(2):232–237.
    1. Katai H, Mizusawa J, Katayama H, et al. Short-term surgical outcomes from a phase III study of laparoscopy-assisted versus open distal gastrectomy with nodal dissection for clinical stage IA/IB gastric cancer: Japan Clinical Oncology Group Study JCOG0912. Gastric Cancer. 2017;20(4):699–708.
    1. Kitano S, Shiraishi N, Fujii K, Yasuda K, Inomata M, Adachi Y. A randomized controlled trial comparing open vs laparoscopy-assisted distal gastrectomy for the treatment of early gastric cancer: an interim report. Surgery. 2002;131(1 Suppl):S306–S311.
    1. Lee JH, Han HS, Lee JH. A prospective randomized study comparing open vs laparoscopy-assisted distal gastrectomy in early gastric cancer: early results. Surg Endosc. 2005;19(2):168–173.
    1. Park YK, Yoon HM, Kim YW, et al. Laparoscopy-assisted versus open D2 distal gastrectomy for advanced gastric cancer: results from a randomized phase II multicenter clinical trial (COACT 1001) Ann Surg. 2018;267(4):638–645.
    1. Shi Y, Xu X, Zhao Y, et al. Short-term surgical outcomes of a randomized controlled trial comparing laparoscopic versus open gastrectomy with D2 lymph node dissection for advanced gastric cancer. Surg Endosc. 2018;32(5):2427–2433.
    1. Takiguchi S, Fujiwara Y, Yamasaki M, et al. Laparoscopy-assisted distal gastrectomy versus open distal gastrectomy. A prospective randomized single-blind study. World J Surg. 2013;37(10):2379–2386.
    1. Wang Z, Xing J, Cai J, et al. Short-term surgical outcomes of laparoscopy-assisted versus open D2 distal gastrectomy for locally advanced gastric cancer in North China: a multicenter randomized controlled trial. Surg Endosc. 2019;33(1):33–45.
    1. Yamashita K, Hosoda K, Moriya H, Mieno H, Katada N, Watanabe M. Long-term prognostic outcome of cT1 gastric cancer patients who underwent laparoscopic gastrectomy after 5-year follow-up. Langenbeck’s Arch Surg. 2016;401(3):333–339.
    1. Lei Zhou GZ, Liu J, Liu H, Li C. Comparison among the early gastric cancer patients receiving laparoscopy radical gastrectomy and those receiving open radical gast. Biomed Res. 2017;28(22):10092–10095.
    1. Guode Luo YC, Gong J, Wang X, Wang B, Zhou J, Li Y. Hand-assisted laparoscopic versus open surgery radical gastrectomy for advanced distal gastric cancer: a prospective randomized study. Int J Clin Exp Med. 2017;10(3):5001–5010.

Source: PubMed

3
Iratkozz fel