Evaluation of the clinical effectiveness of bioactive glass (S53P4) in the treatment of non-unions of the tibia and femur: study protocol of a randomized controlled non-inferiority trial

Michael C Tanner, Raban Heller, Fabian Westhauser, Matthias Miska, Thomas Ferbert, Christian Fischer, Simone Gantz, Gerhard Schmidmaier, Patrick Haubruck, Michael C Tanner, Raban Heller, Fabian Westhauser, Matthias Miska, Thomas Ferbert, Christian Fischer, Simone Gantz, Gerhard Schmidmaier, Patrick Haubruck

Abstract

Background: Treatment of non-union remains challenging and often necessitates augmentation of the resulting defect with an autologous bone graft (ABG). ABG is limited in quantity and its harvesting incurs an additional surgical intervention leaving the risk for associated complications and morbidities. Therefore, artificial bone graft substitutes that might replace autologous bone are needed. S53P4-type bioactive glass (BaG) is a promising material which might be used as bone graft substitute due to its osteostimulative, conductive and antimicrobial properties. In this study, we plan to examine the clinical effectiveness of BaG as a bone graft substitute in Masquelet therapy in comparison with present standard Masquelet therapy using an ABG with tricalciumphosphate to fill the bone defect.

Methods/design: This randomized controlled, clinical non-inferiority trial will be carried out at the Department of Orthopedics and Traumatology at Heidelberg University. Patients who suffer from tibial or femoral non-unions with a segmental bone defect of 2-5 cm and who are receiving Masquelet treatment will be included in the study. The resulting bone defect will either be filled with autologous bone and tricalciumphosphate (control group, N = 25) or BaG (S53P4) (study group, N = 25). Subsequent to operative therapy, all patients will receive the same standardized follow-up procedures. The primary endpoint of the study is union achieved 1year after surgery.

Discussion: The results from the current study will help evaluate the clinical effectiveness of this promising biomaterial in non-union therapy. In addition, this randomized trial will help to identify potential benefits and limitations regarding the use of BaG in Masquelet therapy. Data from the study will increase the knowledge about BaG as a bone graft substitute as well as identify patients possibly benefiting from Masquelet therapy using BaG and those who are more likely to fail, thereby improving the quality of non-union treatment.

Trial registration: German Clinical Trials Register (DRKS), ID: DRKS00013882 . Registered on 22 January 2018.

Keywords: Bioactive glass; Bone grafting; Bone regeneration; Masquelet therapy; Non-union; Pseudarthrosis; S53P4.

Conflict of interest statement

Ethics approval and consent to participate

Ethical approval was obtained by the Ethics Committee of the University of Heidelberg Medical Faculty prior to the beginning of the study (Ethikkommission I der Medizinischen Fakultät Heidelberg, S-472/2017). This trial was registered with the German Clinical Trials Register (DRKS) in Freiburg, a primary registry within the WHO Registry Network, Germany, on 22 January 2018 with the trial registration number DRKS00013882. The CONSORT extension for non-pharmacological interventions and the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) Checklist for the implementation of study protocols were followed (Fig. 2 and Additional file 1) [50, 51]. Written informed consent will be obtained from each patient. In the event that a patient’s physical or mental health becomes jeopardized because of participation in the present study, the patient will be dismissed immediately and excluded from the study. All protocol modifications will be registered with the DRKS, published in the final paper and communicated to the participants.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow chart of the Masquelet therapy and treatment pattern of included patients
Fig. 2
Fig. 2
Study process schedule (according to the Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) guidelines)

References

    1. Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998:S7–21.
    1. Moghaddam A, Zimmermann G, Hammer K, Bruckner T, Grutzner PA, von Recum J. Cigarette smoking influences the clinical and occupational outcome of patients with tibial shaft fractures. Injury. 2011. doi: 10.1016/j.injury.2011.05.011.
    1. Audige L, Griffin D, Bhandari M, Kellam J, Ruedi TP. Path analysis of factors for delayed healing and nonunion in 416 operatively treated tibial shaft fractures. Clin Orthop Relat Res. 2005;438:221–232. doi: 10.1097/01.blo.0000163836.66906.74.
    1. Calori GM, Mazza EL, Mazzola S, Colombo A, Giardina F, Romanò F, Colombo M. Non-unions. Clin Cases Miner Bone Metab. 2017;14(2):186-88. 10.11138/ccmbm/2017.14.1.186..
    1. Metsemakers WJ, Claes G, Terryn PJ, Belmans A, Hoekstra H, Nijs S. Reamer-Irrigator-Aspirator bone graft harvesting for treatment of segmental bone loss: analysis of defect volume as independent risk factor for failure. Eur J Trauma Emerg Surg. 2017; 10.1007/s00068-017-0821-7.
    1. Stafford PR, Norris BL. Reamer-irrigator-aspirator bone graft and bi Masquelet technique for segmental bone defect nonunions: a review of 25 cases. Injury. 2010;41(Suppl 2):S72–S77. doi: 10.1016/S0020-1383(10)70014-0.
    1. Bosemark P, Perdikouri C, Pelkonen M, Isaksson H, Tagil M. The Masquelet induced membrane technique with BMP and a synthetic scaffold can heal a rat femoral critical size defect. J Orthop Res. 2015;33:488–495. doi: 10.1002/jor.22815.
    1. Karger C, Kishi T, Schneider L, Fitoussi F, Masquelet AC. Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res. 2012;98:97–102. doi: 10.1016/j.otsr.2011.11.001.
    1. Masquelet AC, Begue T. The concept of induced membrane for reconstruction of long bone defects. Orthop Clin N Am. 2010;41:27–37. doi: 10.1016/j.ocl.2009.07.011.
    1. Pelissier P, Masquelet AC, Bareille R, Pelissier SM, Amedee J. Induced membranes secrete growth factors including vascular and osteoinductive factors and could stimulate bone regeneration. J Orthop Res. 2004;22:73–79. doi: 10.1016/S0736-0266(03)00165-7.
    1. Moghaddam A, Zietzschmann S, Bruckner T, Schmidmaier G. Treatment of atrophic tibia non-unions according to ‘diamond concept’: results of one- and two-step treatment. Injury. 2015;46(Suppl 4):S39–S50. doi: 10.1016/S0020-1383(15)30017-6.
    1. Schmidmaier G, Herrmann S, Green J, Weber T, Scharfenberger A, Haas NP, et al. Quantitative assessment of growth factors in reaming aspirate, iliac crest, and platelet preparation. Bone. 2006;39:1156–1163. doi: 10.1016/j.bone.2006.05.023.
    1. Qvick LM, Ritter CA, Mutty CE, Rohrbacher BJ, Buyea CM, Anders MJ. Donor site morbidity with reamer-irrigator-aspirator (RIA) use for autogenous bone graft harvesting in a single centre 204 case series. Injury. 2013;44:1263–1269. doi: 10.1016/j.injury.2013.06.008.
    1. Banwart JC, Asher MA, Hassanein RS. Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine (Phila Pa 1976) 1995;20:1055–1060. doi: 10.1097/00007632-199505000-00012.
    1. Boniver J, Humblet C, Delvenne P, Deman J, Rongy AM, Greimers R, et al. TNF-alpha and radiation-induced thymic lymphomas. Leukemia. 1992;6(Suppl 3):83S–84S.
    1. Cox G, Jones E, McGonagle D, Giannoudis PV. Reamer-irrigator-aspirator indications and clinical results: a systematic review. Int Orthop. 2011;35:951–956. doi: 10.1007/s00264-010-1189-z.
    1. Bhandari M, Guyatt GH, Tong D, Adili A, Shaughnessy SG. Reamed versus nonreamed intramedullary nailing of lower extremity long bone fractures: a systematic overview and meta-analysis. J Orthop Trauma. 2000;14:2–9. doi: 10.1097/00005131-200001000-00002.
    1. Blum B, Moseley J, Miller L, Richelsoph K, Haggard W. Measurement of bone morphogenetic proteins and other growth factors in demineralized bone matrix. Orthopedics. 2004;27:s161–s165.
    1. Green J. History and development of suction-irrigation-reaming. Injury. 2010;41(Suppl 2):S24–S31. doi: 10.1016/S0020-1383(10)70005-X.
    1. Hoegel F, Mueller CA, Peter R, Pfister U, Suedkamp NP. Bone debris: dead matter or vital osteoblasts. J Trauma. 2004;56:363–367. doi: 10.1097/01.TA.0000047811.13196.02.
    1. Sturmer KM. Measurement of intramedullary pressure in an animal experiment and propositions to reduce the pressure increase. Injury. 1993;24(Suppl 3):S7–21. doi: 10.1016/0020-1383(93)90002-N.
    1. Westhauser F, Hollig M, Reible B, Xiao K, Schmidmaier G, Moghaddam A. Bone formation of human mesenchymal stem cells harvested from reaming debris is stimulated by low-dose bone morphogenetic protein-7 application in vivo. J Orthop. 2016;13:404–408. doi: 10.1016/j.jor.2016.08.002.
    1. Reible B, Schmidmaier G, Prokscha M, Moghaddam A, Westhauser F. Continuous stimulation with differentiation factors is necessary to enhance osteogenic differentiation of human mesenchymal stem cells in-vitro. Growth Factors. 2017;35:179–188. doi: 10.1080/08977194.2017.1401618.
    1. Moghaddam A, Thaler B, Bruckner T, Tanner M, Schmidmaier G. Treatment of atrophic femoral non-unions according to the diamond concept: results of one- and two-step surgical procedure. J Orthop. 2017;14:123–133. doi: 10.1016/j.jor.2016.10.003.
    1. Akiho S, Kinoshita K, Matsunaga A, Ishii S, Seo H, Nishio J, et al. Incidence of delayed union one year after peri-acetabular osteotomy based on computed tomography. Int Orthop. 2017; 10.1007/s00264-017-3656-2.
    1. Fischer C, Frank M, Kunz P, Tanner M, Weber MA, Moghaddam A, et al. Dynamic contrast-enhanced ultrasound (CEUS) after open and minimally invasive locked plating of proximal humerus fractures. Injury. 2016;47:1725–1731. doi: 10.1016/j.injury.2016.05.005.
    1. Haubruck P, Kammerer A, Korff S, Apitz P, Xiao K, Buchler A, et al. The treatment of nonunions with application of BMP-7 increases the expression pattern for angiogenic and inflammable cytokines: a matched pair analysis. J Inflamm Res. 2016;9:155–165. doi: 10.2147/JIR.S110621.
    1. Moghaddam A, Breier L, Haubruck P, Bender D, Biglari B, Wentzensen A, et al. Non-unions treated with bone morphogenic protein 7: introducing the quantitative measurement of human serum cytokine levels as promising tool in evaluation of adjunct non-union therapy. J Inflamm (Lond). 2016;13:–3. 10.1186/s12950-016-0111-x.
    1. Fischer C, Nissen M, Schmidmaier G, Bruckner T, Kauczor HU, Weber MA. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the prediction of non-union consolidation. Injury. 2017;48:357–363. doi: 10.1016/j.injury.2017.01.021.
    1. Fischer C, Preuss EM, Tanner M, Bruckner T, Krix M, Amarteifio E, et al. Dynamic contrast-enhanced sonography and dynamic contrast-enhanced magnetic resonance imaging for preoperative diagnosis of infected nonunions. J Ultrasound Med. 2016;35:933–942. doi: 10.7863/ultra.15.06107.
    1. De Long WG, Jr, Einhorn TA, Koval K, McKee M, Smith W, Sanders R, et al. Bone grafts and bone graft substitutes in orthopaedic trauma surgery. A critical analysis. J Bone Joint Surg Am. 2007;89:649–658. doi: 10.2106/JBJS.F.00465.
    1. Pape HC, Evans A, Kobbe P. Autologous bone graft: properties and techniques. J Orthop Trauma. 2010;24(Suppl 1):S36–S40. doi: 10.1097/BOT.0b013e3181cec4a1.
    1. van Gestel NA, Geurts J, Hulsen DJ, van Rietbergen B, Hofmann S, Arts JJ. Clinical applications of S53P4 bioactive glass in bone healing and osteomyelitic treatment: a literature review. Biomed Res Int. 2015;2015:684826. doi: 10.1155/2015/684826.
    1. Westhauser F, Weis C, Prokscha M, Bittrich LA, Li W, Xiao K, et al. Three-dimensional polymer coated 45S5-type bioactive glass scaffolds seeded with human mesenchymal stem cells show bone formation in vivo. J Mater Sci Mater Med. 2016;27:119. doi: 10.1007/s10856-016-5732-3.
    1. Bortolin M, De Vecchi E, Romano CL, Toscano M, Mattina R, Drago L. Antibiofilm agents against MDR bacterial strains: is bioactive glass BAG-S53P4 also effective? J Antimicrob Chemother. 2016;71:123–127. doi: 10.1093/jac/dkv327.
    1. Efird J. Blocked randomization with randomly selected block sizes. Int J Environ Res Public Health. 2011;8:15–20. doi: 10.3390/ijerph8010015.
    1. Giannoudis PV, Einhorn TA, Schmidmaier G, Marsh D. The diamond concept—open questions. Injury. 2008;39(Suppl 2):S5–S8. doi: 10.1016/S0020-1383(08)70010-X.
    1. Schmidmaier G, Moghaddam A. Long bone nonunion. Zeitschrift fur Orthopadie und Unfallchirurgie. 2015;153:659–674. doi: 10.1055/s-0035-1558259.
    1. Haubruck P, Ober J, Heller R, Miska M, Schmidmaier G, Tanner MC. Complications and risk management in the use of the reaming-irrigator-aspirator (RIA) system: RIA is a safe and reliable method in harvesting autologous bone graft. PLoS One. 2018;13:e0196051. doi: 10.1371/journal.pone.0196051.
    1. Miska M, Findeisen S, Tanner M, Biglari B, Studier-Fischer S, Grutzner PA, et al. Treatment of nonunions in fractures of the humeral shaft according to the Diamond Concept. Bone Joint J. 2016;98-B:81–87. doi: 10.1302/0301-620X.98B1.35682.
    1. Team RC. R: A Language and Environment for Statistical Computing. 2015.
    1. Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag; 2009.
    1. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi: 10.1186/1471-2105-12-77.
    1. Heller RA, Raven TF, Swing T, Kunzmann K, Daniel V, Haubruck P, et al. CCL-2 as a possible early marker for remission after traumatic spinal cord injury. Spinal Cord. 2017;55:1002–1009. doi: 10.1038/sc.2017.69.
    1. Moghaddam A, Sperl A, Heller R, Kunzmann K, Graeser V, Akbar M, et al. Elevated serum insulin-like growth factor 1 levels in patients with neurological remission after traumatic spinal cord injury. PLoS One. 2016;11:e0159764. doi: 10.1371/journal.pone.0159764.
    1. Moghaddam A, Heller R, Daniel V, Swing T, Akbar M, Gerner HJ, et al. Exploratory study to suggest the possibility of MMP-8 and MMP-9 serum levels as early markers for remission after traumatic spinal cord injury. Spinal Cord. 2017;55:8–15. doi: 10.1038/sc.2016.104.
    1. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, et al. Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–2373. doi: 10.1016/j.actbio.2011.03.016.
    1. Westhauser F, Ciraldo F, Balasubramanian P, Senger AS, Schmidmaier G, Moghaddam A, et al. Micro-computed-tomography-guided analysis of in vitro structural modifications in two types of 45S5 bioactive glass based scaffolds. Materials (Basel). 2017;10 10.3390/ma10121341.
    1. Vallier HA, Cureton BA, Patterson BM. Randomized, prospective comparison of plate versus intramedullary nail fixation for distal tibia shaft fractures. J Orthop Trauma. 2011;25:736–741. doi: 10.1097/BOT.0b013e318213f709.
    1. Chan AW, Tetzlaff JM, Gotzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.
    1. Schulz KF, Altman DG, Moher D, Group C CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. Int J Surg. 2011;9:672–677. doi: 10.1016/j.ijsu.2011.09.004.

Source: PubMed

3
Iratkozz fel