Prognostic value of venous blood analysis at the start of CPR in non-traumatic out-of-hospital cardiac arrest: association with ROSC and the neurological outcome

Ervigio Corral Torres, Alberto Hernández-Tejedor, Rosa Suárez Bustamante, Ramón de Elías Hernández, Isabel Casado Flórez, Antonio San Juan Linares, Ervigio Corral Torres, Alberto Hernández-Tejedor, Rosa Suárez Bustamante, Ramón de Elías Hernández, Isabel Casado Flórez, Antonio San Juan Linares

Abstract

Background: The knowledge of new prognostic factors in out-of-hospital cardiac arrest (OHCA) that can be evaluated since the beginning of cardiopulmonary resuscitation (CPR) manoeuvres could be helpful in the decision-making process of prehospital care. We aim to identify metabolic variables at the start of advanced CPR at the scene that may be associated with two main outcomes of CPR (recovery of spontaneous circulation (ROSC) and neurological outcome).

Methods: Prospective observational study of all non-traumatic OHCA in patients older than 17 years assisted by emergency medical services (EMS), with doctor and nurse on board, between January 2012 and December 2017. Venous blood gases were sampled upon initially obtaining venous access to determine the initial values of pH, pCO2, HCO3-, base excess (BE), Na+, K+, Ca2+ and lactate. ROSC upon arrival at the hospital and neurological status 30 days later (Cerebral Performance Categories (CPC) scale) were recorded.

Results: We included 1552 patients with OHCA with blood test data in a 6-year period. ROSC was achieved in 906 cases (58.4%), and good neurological recovery at 30 days (CPC I-II) occurred in 383 cases (24.68%). In multivariate analysis, we found a significant relationship between non-recovery of spontaneous circulation (no-ROSC) and low pH levels (adjusted odds ratio (OR) 0.03 (0.002-0.59), p = 0.020), high pCO2 levels (adjusted OR 1.03 [1.01-1.05], p = 0.008) and high potassium levels (adjusted OR 2.28 [1.43-3.61], p = 0.008). Poor neurological outcomes were associated with low pH levels (adjusted OR 0.06 [0.02-0.18], p < 0.001), high pCO2 (adjusted OR 1.05 [1.03-1.08], p < 0.001), low HCO3- (adjusted OR 0.97 [0.94-0.999], p = 0.044), low BE (adjusted OR 0.96 [0.93-0.98], p < 0.001) and high potassium levels (adjusted OR 1.37 [1.16-1.60], p < 0.001).

Conclusion: There is a significant relationship between severe alterations of venous blood-gas variables and potassium at the start of CPR of non-traumatic OHCA and low-ROSC rate and neurological prognosis.

Keywords: Blood gases; Emergency medical services; Hydrogen-ion concentration; Out-of-hospital cardiac arrest.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study scenario. Central green boxes summarise data from all the records included. CPC I-II percentages are out of all patients, not out of patients who recovered spontaneous circulation
Fig. 2
Fig. 2
a Relationship between the percentages of recovery of spontaneous circulation (ROSC) and 30-day survival with good neurological outcome (CPC I-II) and the values of pH and pCO2 expressed in ranges evaluated in the multivariate binary logistic regression. b Relationship between the percentages of survival with good neurological outcome (CPC I-II) and the values of base excess (BE) and K+ expressed in ranges evaluated in the multivariate binary logistic regression. Venous blood-gas variables, including alterations in blood potassium, are associated with neurological outcomes. Low pH, a raised pCO2 and a high base deficit, as well as either very low or high blood concentration of potassium, were associated with worse outcome

References

    1. Sasson C, Rogers MA, Dahl J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes. 2010;3:63–81. doi: 10.1161/CIRCOUTCOMES.109.889576.
    1. Travers AH, Perkins GD, Berg RA, Castren M, Considine J, Escalante R, et al. Basic life support chapter collaborators. Part 3: adult basic life support and automated external defibrillation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation. 2015;132(Suppl 1):S51–S83. doi: 10.1161/CIR.0000000000000272.
    1. Adnet F, Triba MN, Borron SW, Lapostolle F, Hubert H, Gueugniaud PY, et al. Cardiopulmonary resuscitation duration and survival in out-of-hospital cardiac arrest patients. Resuscitation. 2017;111:74–81. doi: 10.1016/j.resuscitation.2016.11.024.
    1. Shin J, Lim YS, Kim K, Lee HJ, Lee SJ, Jung E, et al. Initial blood pH during cardiopulmonary resuscitation in out-of-hospital cardiac arrest patients: a multicenter observational registry-based study. Crit Care. 2017;21:322. doi: 10.1186/s13054-017-1893-9.
    1. Nolan JP, Neumar RW, Adrie C, Aibiki M, Berg RA, Böttiger BW, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A scientific statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation. 2008;79:350–379. doi: 10.1016/j.resuscitation.2008.09.017.
    1. Sandroni C, Cavallaro F, Callaway CW, Sanna T, D'Arrigo S, Kuiper M, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 1: patients not treated with therapeutic hypothermia. Resuscitation. 2013;84:1310–1323. doi: 10.1016/j.resuscitation.2013.05.013.
    1. Sandroni C, Cavallaro F, Callaway CW, Sanna T, D'Arrigo S, Kuiper M, et al. Predictors of poor neurological outcome in adult comatose survivors of cardiac arrest: a systematic review and meta-analysis. Part 2: patients treated with therapeutic hypothermia. Resuscitation. 2013;84:1324–1338. doi: 10.1016/j.resuscitation.2013.06.020.
    1. Kaji AH, Hanif AM, Bosson N, Ostermayer D, Niemann JT. Predictors of neurologic outcome in patients resuscitated from out-of-hospital cardiac arrest using classification and regression tree analysis. Am J Cardiol. 2014;114:1024–1028. doi: 10.1016/j.amjcard.2014.06.031.
    1. Lin YN, Chang SS, Wang LM, Chi HT, Ueng KC, Tsai CF, et al. Prehospital predictors of initial shockable rhythm in out-of-hospital cardiac arrest: findings from the Taichung Sudden Unexpected Death Registry (THUNDER) Mayo Clin Proc. 2017;92:347–359. doi: 10.1016/j.mayocp.2016.10.029.
    1. Aschauer S, Dorffner G, Sterz F, Erdogmus A, Laggner A. A prediction tool for initial out-of-hospital cardiac arrest survivors. Resuscitation. 2014;85:1225–1231. doi: 10.1016/j.resuscitation.2014.06.007.
    1. Skrifvars MB, Varghese B, Parr MJ. Survival and outcome prediction using the apache III and the out-of-hospital cardiac arrest (OHCA) score in patients treated in the intensive care unit (ICU) following out-of-hospital, in-hospital or ICU cardiac arrest. Resuscitation. 2012;83:728–733. doi: 10.1016/j.resuscitation.2011.11.036.
    1. Huntgeburth M, Adler C, Rosenkranz S, Zobel C, Haupt WF, Dohmen C, et al. Changes in neuron-specific enolase are more suitable than its absolute serum levels for the prediction of neurologic outcome in hypothermia-treated patients with out-of-hospital cardiac arrest. Neurocrit Care. 2014;20:358–366. doi: 10.1007/s12028-013-9848-8.
    1. Schneider AG, Eastwood GM, Bellomo R, Bailey M, Lipcsey M, Pilcher D, et al. Arterial carbon dioxide tension and outcome in patients admitted to the intensive care unit after cardiac arrest. Resuscitation. 2013;84:927–934. doi: 10.1016/j.resuscitation.2013.02.014.
    1. Lee BK, Jeung KW, Lee HY, Lee SJ, Jung YH, Lee WK, et al. Association between mean arterial blood gas tension and outcome in cardiac arrest patients treated with therapeutic hypothermia. Am J Emerg Med. 2014;32:55–60. doi: 10.1016/j.ajem.2013.09.044.
    1. Cocchi MN, Miller J, Hunziker S, Carney E, Salciccioli J, Farris S, et al. The association of lactate and vasopressor need for mortality prediction in survivors of cardiac arrest. Minerva Anestesiol. 2011;77:1063–1071.
    1. Starodub R, Abella BS, Grossestreuer AV, Shofer FS, Perman SM, Leary M, et al. Association of serum lactate and survival outcomes in patients undergoing therapeutic hypothermia after cardiac arrest. Resuscitation. 2013;84:1078–1082. doi: 10.1016/j.resuscitation.2013.02.001.
    1. Sarıaydın T, Çorbacıoğlu ŞK, Çevik Y, Emektar E. Effect of initial lactate level on short-term survival in patients with out-of-hospital cardiac arrest. Turk J Emerg Med. 2017;17:123–127. doi: 10.1016/j.tjem.2017.05.003.
    1. Ganga HV, Kallur KR, Patel NB, Sawyer KN, Gowd PB, Nair SU, et al. The impact of severe acidemia on neurologic outcome of cardiac arrest survivors undergoing therapeutic hypothermia. Resuscitation. 2013;84:1723–1727. doi: 10.1016/j.resuscitation.2013.07.006.
    1. Vaahersalo J, Bendel S, Reinikainen M, Kurola J, Tiainen M, Raj R, et al. Arterial blood gas tensions after resuscitation from out-of-hospital cardiac arrest: associations with long-term neurologic outcome. Crit Care Med. 2014;42:1463–1470. doi: 10.1097/CCM.0000000000000228.
    1. Momiyama Y, Yamada W, Miyata K, Miura K, Fukuda T, Fuse J, et al. Prognostic values of blood pH and lactate levels in patients resuscitated from out-of-hospital cardiac arrest. Acute Med Surg. 2017;4:25–30. doi: 10.1002/ams2.217.
    1. Corral E, Casado MI, García-Ochoa MJ, Suárez R. Looking at “metabolic watch”. The analytical parameters found at the beginning of the resuscitation are predictors of the neurological prognostic in the prehospital cardiac arrest. Resuscitation. 2015;96 Suppl:148.
    1. Hernández-Tejedor A, Corral E, de Elías R, Suárez R. CPR by first responders improves acid-base balance and prognosis in out-of-hospital non-traumatic cardiac arrest. BMJ Open. 2019;9(Suppl 2):A1–A2.
    1. SAMUR-Protección Civil . Procedures manual. 2019.
    1. Zeserson E, Goodgame B, Hess JD, Schultz K, Hoon C, Lamb K, et al. Correlation of venous blood gas and pulse oximetry with arterial blood gas in the undifferentiated critically ill patient. J Intensive Care Med. 2018;33:176–181. doi: 10.1177/0885066616652597.
    1. Soar J, Nolan JP, Böttiger BW, Perkins GD, Lott C, Carli P, et al. Adult advanced life support section collaborators. European Resuscitation Council guidelines for resuscitation 2015: section 3. Adult advanced life support. Resuscitation. 2015;95:100–147. doi: 10.1016/j.resuscitation.2015.07.016.
    1. Mancini ME, Diekema DS, Hoadley TA, Kadlec KD, Leveille MH, McGowan JE, et al. Part 3: ethical issues: 2015 American Heart Association guidelines update for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation. 2015;132(Suppl 2):S383–S396. doi: 10.1161/CIR.0000000000000254.
    1. Donnino MW, Miller J, Goyal N, Loomba M, Sankey SS, Dolcourt B, et al. Effective lactate clearance is associated with improved outcome in post-cardiac arrest patients. Resuscitation. 2007;75:229–234. doi: 10.1016/j.resuscitation.2007.03.021.
    1. Lin YR, Syue YJ, Lee TH, Chou CC, Chang CF, Li CJ. Impact of different serum potassium levels on postresuscitation heart function and hemodynamics in patients with nontraumatic out-of-hospital cardiac arrest. Bioinorg Chem Appl. 2018;2018:5825929. doi: 10.1155/2018/5825929.

Source: PubMed

3
Iratkozz fel