Exoskeleton-Robot Assisted Therapy in Stroke Patients: A Lesion Mapping Study

Antonio Cerasa, Loris Pignolo, Vera Gramigna, Sebastiano Serra, Giuseppe Olivadese, Federico Rocca, Paolo Perrotta, Giuliano Dolce, Aldo Quattrone, Paolo Tonin, Antonio Cerasa, Loris Pignolo, Vera Gramigna, Sebastiano Serra, Giuseppe Olivadese, Federico Rocca, Paolo Perrotta, Giuliano Dolce, Aldo Quattrone, Paolo Tonin

Abstract

Background: Technology-supported rehabilitation is emerging as a solution to support therapists in providing a high-intensity, repetitive and task-specific treatment, aimed at improving stroke recovery. End-effector robotic devices are known to positively affect the recovery of arm functions, however there is a lack of evidence regarding exoskeletons. This paper evaluates the impact of cerebral lesion load on the response to a validated robotic-assisted rehabilitation protocol. Methods: Fourteen hemiparetic patients were assessed in a within-subject design (age 66.9 ± 11.3 years; 10 men and 4 women). Patients, in post-acute phase, underwent 7 weeks of bilateral arm training assisted by an exoskeleton robot combined with a conventional treatment (consisting of simple physical activity together with occupational therapy). Clinical and neuroimaging evaluations were performed immediately before and after rehabilitation treatments. Fugl-Meyer (FM) and Motricity Index (MI) were selected to measure primary outcomes, i.e., motor function and strength. Functional independance measure (FIM) and Barthel Index were selected to measure secondary outcomes, i.e., daily living activities. Voxel-based lesion symptom mapping (VLSM) was used to determine the degree of cerebral lesions associated with motor recovery. Results: Robot-assisted rehabilitation was effective in improving upper limb motor function recovery, considering both primary and secondary outcomes. VLSM detected that lesion load in the superior region of the corona radiata, internal capsule and putamen were significantly associated with recovery of the upper limb as defined by the FM scores (p-level < 0.01). Conclusions: The probability of functional recovery from stroke by means of exoskeleton robotic rehabilitation relies on the integrity of specific subcortical regions involved in the primary motor pathway. This is consistent with previous evidence obtained with conventional neurorehabilitation approaches.

Keywords: exoskeleton; neurorehabilitation; stroke; upper limb; voxel-based lesion symptom mapping.

Figures

Figure 1
Figure 1
Flow diagram of participant recruitment and participation in the study: stroke patients participated in an individualized robotic-assisted neurorehabilitation program (ARAMIS system).
Figure 2
Figure 2
The robotic-assisted device called Automatic Recovery Arm Motility Integrated System (ARAMIS).
Figure 3
Figure 3
Therapy protocol with ARAMIS.
Figure 4
Figure 4
The figure represents voxel-level lesion-mapping analysis performed with voxel-based lesion symptom mapping (VLSM) method implemented in the nonparametric mapping (NPM) software included into the MRIcron software (A). Overlay of FLAIR-dependent MRI lesions detected in all stroke patients (n = 14). The color indicates the frequency of overlapping stroke-related lesions (maximal: red blobs). (B) Regression Analysis: Voxels within the superior region of the corona radiata, internal capsule and putamen were significantly correlated with the degree of motor recovery as assessed by FM-UE scale (violet blobs; P < 0.01).

References

    1. Aisen M. L., Krebs H. I., Hogan N., McDowel F., Volpe B. T. (1997). The effect of robot-assisted therapy and rehabilitative training on motor recovery following stroke. Arch. Neurol. 54, 443–446. 10.1001/archneur.1997.00550160075019
    1. Bates E., Wilson S. M., Saygin A. P., Dick F., Sereno M. I., Knight R. T., et al. . (2003). Voxel-based lesion- symptom mapping. Nat. Neurosci. 6, 448–450. 10.1038/nn1050
    1. Bertani R., Melegari C., De Cola M. C., Bramanti A., Bramanti P., Calabrò R. S. (2017). Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis. Neurol. Sci. 38, 1561–1569. 10.1007/s10072-017-2995-5
    1. Brett M., Leff A. P., Rorden C., Ashburner J. (2001). Spatial normalization of brain images with focal lesions using cost function masking. Neuroimage 14, 486–500. 10.1006/nimg.2001.0845
    1. Burke Quinlan E., Dodakian L., See J., McKenzie A., Le V., Wojnowicz M., et al. . (2015). Neural function, injury, and stroke subtype predict treatment gains after stroke. Ann. Neurol. 77, 132–145. 10.1002/ana.24309
    1. Carrera E., Tononi G. (2014). Diaschisis: past, present, future. Brain 137, 2408–2422. 10.1093/brain/awu101
    1. Choo P. L., Gallagher H. L., Morris J., Pomeroy V. M., van Wijck F. (2015). Correlations between arm motor behavior and brain function following bilateral arm training after stroke: a systematic review. Brain Behav. 5:e00411. 10.1002/brb3.411
    1. Colizzi L., Lidonnici A., Pignolo L. (2009). The ARAMIS project: a concept robot and technical design. J. Rehab. Med. 41, 1011–1101. 10.2340/16501977-0407
    1. Collin C., Wade D. (1990). Assessing motor impairment after stroke: a pilot reliability study. J. Neurol. Neurosurg. Psychiatry 53, 576–579. 10.1136/jnnp.53.7.576
    1. Collin C., Wade D. T., Davies S., Horne V. (1988). The Barthel ADL Index: a reliability study. Int. Disabil. Stud. 10, 61–63. 10.3109/09638288809164103
    1. Dolce G., Lucca L. F., Pignolo L. (2009). Robot-assisted rehabilitation of the paretic upper limb: rationale of the ARAMIS project. J. Rehabil. Med. 41, 1007–1101. 10.2340/16501977-0406
    1. Doyon J., Penhune V., Ungerleider L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41, 252–262. 10.1016/s0028-3932(02)00158-6
    1. Fan Y. T., Lin K. C., Liu H. L., Wu C. Y., Wai Y. Y., Lee T. H. (2016). Neural correlates of motor recovery after robot-assisted stroke rehabilitation: a case series study. Neurocase 22, 416–425. 10.1080/13554794.2016.1215469
    1. Favre I., Zeffiro T. A., Detante O., Krainik A., Hommel M., Jaillard A. (2014). Upper limb recovery after stroke is associated with ipsilesional primary motor cortical activity: a meta-analysis. Stroke 45, 1077–1083. 10.1161/STROKEAHA.113.003168
    1. Formaggio E., Storti S. F., Boscolo Galazzo I., Gandolfi M., Geroin C., Smania N., et al. . (2013). Modulation of event-related desynchronization in robot-assisted hand performance: brain oscillatory changes in active, passive and imagined movements. J. Neuroeng. Rehabil. 10:24. 10.1186/1743-0003-10-24
    1. Franchignoni F. P., Tesio L., Ricupero C., Martino M. T. (1997). Trunk control test as an early predictor of stroke rehabilitation outcome. Stroke 28, 1382–1385. 10.1161/01.str.28.7.1382
    1. Fugl-Meyer A. R., Jääskö L., Leyman I., Olsson S., Steglind S. (1975). The post-stroke hemiplegic patient. Scand. J. Rehabil. Med. 7, 13–31.
    1. Gandolfi M., Formaggio E., Geroin C., Storti S. F., Boscolo Galazzo I., Bortolami M., et al. . (2018). Quantification of upper limb motor recovery and EEG power changes after robot-assisted bilateral arm training in chronic stroke patients: a prospective pilot study. Neural Plast. 2018:8105480. 10.1155/2018/8105480
    1. Ganguly K., Secundo L., Ranade G., Orsborn A., Chang E. F., Dimitrov D. F., et al. . (2009). Cortical representation of ipsilateral arm movements in monkey and man. J. Neurosci. 29, 12948–12956. 10.1523/JNEUROSCI.2471-09.2009
    1. Hannanu F. F., Zeffiro T. A., Lamalle L., Heck O., Renard F., Thuriot A., et al. . (2017). Parietal operculum and motor cortex activities predict motor recovery in moderate to severe stroke. Neuroimage Clin. 14, 518–529. 10.1016/j.nicl.2017.01.023
    1. Hendricks H. T., Zwarts M. J., Plat E. F., van Limbeek L. J. (2002). Systematic review for the early prediction of motor and functional outcome after stroke by using motor-evoked potentials. Arch. Phys. Med. Rehabil. 83, 1303–1308. 10.1053/apmr.2002.34284
    1. Huang V. S., Krakauer J. W. (2009). Robotic neurorehabilitation: a computational motor learning perspective. J. Neuroeng. Rehabil. 6:5. 10.1186/1743-0003-6-5
    1. Inoue K., Madhyastha T., Rudrauf D., Mehta S., Grabowski T. (2014). What affects detectability of lesion-deficit relationships in lesion studies? Neuroimage Clin. 6, 388–397. 10.1016/j.nicl.2014.10.002
    1. Keith R. A., Granger C. V., Hamilton B. B., Sherwin F. S. (1987). The functional independence measure: a new tool for rehabilitation. Adv. Clin. Rehabil. 1, 6–18.
    1. Langhorne P., Coupar F., Pollock A. (2009). Motor recovery after stroke: a systematic review. Lancet Neurol. 8, 741–754. 10.1016/s1474-4422(09)70150-4
    1. Lee K. B., Kim J. S., Hong B. Y., Sul B., Song S., Sung W. J., et al. . (2017). Brain lesions affecting gait recovery in stroke patients. Brain Behav. 7:e00868. 10.1002/brb3.868
    1. Lin F. H., Agnew J. A., Belliveau J. W., Zeffiro T. A. (2009). Functional and effective connectivity of visuomotor control systems demonstrated using generalized partial least squares and structural equation modeling. Hum. Brain Mapp. 30, 2232–2251. 10.1002/hbm.20664
    1. Lindmark B., Hamrin E. (1988). Evaluation of functional capacity after stroke as a basis for active intervention. Scand. J. Rehabil. Med. 20, 111–122. 10.1111/j.1471-6712.1988.tb00357.x
    1. Lo A. C., Guarino P. D., Richards L. G., Haselkorn J. K., Wittenberg G. F., Federman D. G., et al. . (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 362, 1772–1783. 10.1056/NEJMoa0911341
    1. Lo K., Stephenson M., Lockwood C. (2017). Effectiveness of robotic assisted rehabilitation for mobility and functional ability in adult stroke patients: a systematic review protocol. JBI Database System. Rev. Implement. Rep. 15, 39–48. 10.11124/JBISRIR-2016-002957
    1. Lo H. S., Xie S. Q. (2012). Exoskeleton robots for upper-limb rehabilitation: state of the art and future prospects. Med. Eng. Phys. 34, 261–268. 10.1016/j.medengphy.2011.10.004
    1. Masiero S., Celia A., Rosati G., Armani M. (2007). Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch. Phys. Med. Rehabil. 88, 142–149. 10.1016/j.apmr.2006.10.032
    1. Murphy T. H., Corbett D. (2009). Plasticity during stroke recovery: from synapse to behavior. Nat. Rev. Neurosci. 10, 861–872. 10.1038/nrn2735
    1. Nudo R. J., Wise B. M., Sifuentes F., Milliken G. W. (1996). Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272, 1791–1794. 10.1126/science.272.5269.1791
    1. Pignolo L. (2009). Robotics in neurorehabilitation. J. Rehabil. Med. 41, 955–960. 10.2340/16501977-0434
    1. Pignolo L., Lucca L. F., Basta G., Serra S., Pugliese M. E., Sannita W. G., et al. . (2016). A new treatment in the rehabilitation of the paretic upper limb after stroke: the ARAMIS prototype and treatment protocol. Ann. Ist. Super. Sanita 52, 301–308. 10.4415/ANN_16_02_25
    1. Pignolo L., Rogano S., Quintieri M., Leto E., Dolce G. (2012). Decreasing incidence of paroxysmal sympathetic hyperactivity syndrome in the vegetative state. J. Rehabil. Med. 44, 502–504. 10.2340/16501977-0981
    1. Ramsey L. E., Siegel J. S., Lang C. E., Strube M., Shulman G. L., Corbetta M. (2017). Behavioural clusters and predictors of performance during recovery from stroke. Nat. Hum. Behav. 1:0038. 10.1038/s41562-016-0038
    1. Rehme A. K., Fink G. R., von Cramon D. Y., Grefkes C. (2011). The role of the contralesional motor cortex for motor recovery in the early days after stroke assessed with longitudinal FMRI. Cereb. Cortex 21, 756–768. 10.1093/cercor/bhQ150
    1. Rehme A. K., Volz L. J., Feis D. L., Eickhoff S. B., Fink G. R., Grefkes C. (2015). Individual prediction of chronic motor outcome in the acute post-stroke stage: behavioral parameters versus functional imaging. Hum. Brain Mapp. 36, 4553–4565. 10.1002/hbm.22936
    1. Rorden C., Karnath H. O., Bonilha L. (2007). Improving lesion-symptom mapping. J. Cogn. Neurosci. 19, 1081–1088. 10.1162/jocn.2007.19.7.1081
    1. Rorden C., Brett M. (2000). Stereotaxic display of brain visions. Behav. Neurol. 12, 191–200. 10.1155/2000/421719
    1. Saleh S., Fluet G., Qiu Q., Merians A., Adamovich S. V., Tunik E. (2017). Neural patterns of reorganization after intensive robot-assisted virtual reality therapy and repetitive task practice in patients with chronic stroke. Front. Neurol. 8:452. 10.3389/fneur.2017.00452
    1. Seghier M. L. (2008). Laterality index in functional MRI: methodological issues. Magn. Reson. Imaging 26, 594–601. 10.1016/j.mri.2007.10.010
    1. Shelton F. N., Reding M. J. (2001). Effect of lesion location on upper limb motor recovery after stroke. Stroke 32, 107–112. 10.1161/01.str.32.1.107
    1. Siegel J. S., Seitzman B. A., Ramsey L. E., Ortega M., Gordon E. M., Dosenbach N. U. F., et al. . (2018). Re-emergence of modular brain networks in stroke recovery. Cortex 101, 44–59. 10.1016/j.cortex.2017.12.019
    1. Stinear C. (2010). Prediction of recovery of motor function after stroke. Lancet Neurol. 9, 1228–1232. 10.1016/s1474-4422(10)70247-7
    1. Stinear C. M., Barber P. A., Coxon J. P., Fleming M. K., Byblow W. D. (2008). Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain 131, 1381–1390. 10.1093/brain/awn051
    1. Stinear C. M., Barber P. A., Petoe M., Anwar S., Byblow W. D. (2012). The PREP algorithm predicts potential for upper limb recovery after stroke. Brain 135, 2527–2535. 10.1093/brain/aws146
    1. Stinear C. M., Ward N. S. (2013). How useful is imaging in predicting outcomes in stroke rehabilitation? Int. J. Stroke 8, 33–37. 10.1111/j.1747-4949.2012.00970.x
    1. Swayne O. B., Rothwell J. C., Ward N. S., Greenwood R. J. (2008). Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. Cereb. Cortex 18, 1909–1922. 10.1093/cercor/bhm218
    1. Takakusaki K. (2013). Neurophysiology of gait: from the spinal cord to the frontal lobe. Mov. Disord. 28, 1483–1491. 10.1002/mds.25669
    1. Turner D. L., Ramos-Murguialday A., Birbaumer N., Hoffmann U., Luft A. (2013). Neurophysiology of robot-mediated training and therapy: a perspective for future use in clinical populations. Front. Neurol. 4:184. 10.3389/fneur.2013.00184
    1. Volpe B. T., Krebs H. I., Hogan N., Edelstein L., Diels C., Aisen M. L. (2000). A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology 54, 1938–1944. 10.1212/WNL.54.10.1938

Source: PubMed

3
Iratkozz fel