Pain Perception in Disorder of Consciousness: A Scoping Review on Current Knowledge, Clinical Applications, and Future Perspective

Rocco Salvatore Calabrò, Loris Pignolo, Claudia Müller-Eising, Antonino Naro, Rocco Salvatore Calabrò, Loris Pignolo, Claudia Müller-Eising, Antonino Naro

Abstract

Pain perception in individuals with prolonged disorders of consciousness (PDOC) is still a matter of debate. Advanced neuroimaging studies suggest some cortical activations even in patients with unresponsive wakefulness syndrome (UWS) compared to those with a minimally conscious state (MCS). Therefore, pain perception has to be considered even in individuals with UWS. However, advanced neuroimaging assessment can be challenging to conduct, and its findings are sometimes difficult to be interpreted. Conversely, multichannel electroencephalography (EEG) and laser-evoked potentials (LEPs) can be carried out quickly and are more adaptable to the clinical needs. In this scoping review, we dealt with the neurophysiological basis underpinning pain in PDOC, pointing out how pain perception assessment in these individuals might help in reducing the misdiagnosis rate. The available literature data suggest that patients with UWS show a more severe functional connectivity breakdown among the pain-related brain areas compared to individuals in MCS, pointing out that pain perception increases with the level of consciousness. However, there are noteworthy exceptions, because some UWS patients show pain-related cortical activations that partially overlap those observed in MCS individuals. This suggests that some patients with UWS may have residual brain functional connectivity supporting the somatosensory, affective, and cognitive aspects of pain processing (i.e., a conscious experience of the unpleasantness of pain), rather than only being able to show autonomic responses to potentially harmful stimuli. Therefore, the significance of the neurophysiological approach to pain perception in PDOC seems to be clear, and despite some methodological caveats (including intensity of stimulation, multimodal paradigms, and active vs. passive stimulation protocols), remain to be solved. To summarize, an accurate clinical and neurophysiological assessment should always be performed for a better understanding of pain perception neurophysiological underpinnings, a more precise differential diagnosis at the level of individual cases as well as group comparisons, and patient-tailored management.

Keywords: functional connectivity; minimally conscious state (MCS); neurophysiology; nociception; pain; prolonged disorders of consciousness (PDOC); unresponsive wakefulness syndrome (UWS).

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Illustration of the key brain areas related to pain processing and perception. They comprise densely interconnected sensory or discriminative (yellow tags), affective (blue tags), and associative areas (red tags). Brainstem and diencephalic areas are embedded within the autonomic nervous system (ANS) and can be evaluated using specific measures (including hearth rate variability). Sensory and/or nociceptive evoked potentials (EPs) and gamma-band oscillations (GBO) recorded using EEG can follow nociceptive stimulation (blue shock) combined or not with cortical stimulation using, e.g., transcranial magnetic stimulation (yellow shock). These represent the main neurophysiological paradigms available in the literature to gain objective measures of pain processing in PDOC patients. Legend: PFC, prefrontal cortex; ACC, anterior cingulate cortex; In, insula; Bg, basal ganglia; Am, amygdala; Hi, hippocampus; Th, thalamus; bs, brainstem; SC, spinal cord; SSC, somatosensory cortex; PPC, posterior parietal cortex.
Figure 2
Figure 2
Shows the search strategy we used to select pain assessment studies in patients with PDOC.

References

    1. Plum F., Posner J.B. The diagnosis of stupor and coma. Contemp. Neurol. Ser. 1972;10:1–286.
    1. Royal College of Physicians The vegetative state: Guidance on diagnosis and management. Clin. Med. 2003;3:249–254. doi: 10.7861/clinmedicine.3-3-249.
    1. The Quality Standards Subcommittee of the American Academy of Neurology Practice parameters: Assessment and management of patients in the persistent vegetative state. Neurology. 1995;45:1015–1018. doi: 10.1212/WNL.45.5.1015.
    1. Laureys S., European Task Force on Disorders of Consciousness. Celesia G.G., Cohadon F., Lavrijsen J., León-Carrión J., Sannita W.G., Sazbon L., Schmutzhard E., Von Wild K.R., et al. Unresponsive wakefulness syndrome: A new name for the vegetative state or apallic syndrome. BMC Med. 2010;8:68–72. doi: 10.1186/1741-7015-8-68.
    1. Giacino J.T., Ashwal S., Childs N., Cranford R., Jennett B., Katz D.I., Kelly J.P., Rosenberg J.H., Whyte J., Zafonte R.D., et al. The minimally conscious state: Definition and diagnostic criteria. Neurology. 2002;58:349–353. doi: 10.1212/WNL.58.3.349.
    1. Schiff N.D. Cognitive motor dissociation following severe brain injuries. JAMA Neurol. 2015;72:1413–1415. doi: 10.1001/jamaneurol.2015.2899.
    1. Bekinschtein T., Niklison J., Sigman L., Manes F., Leiguarda R., Armony J., Owen A., Carpintiero S., Olmos L. Emotion processing in the minimally conscious state. J. Neurol. Neurosurg. Psychiatry. 2004;75:788. doi: 10.1136/jnnp.2003.034876.
    1. Bekinschtein T.A., Manes F.F., Villarreal M., Owen A.M., Maggiore V.D. Functional imaging reveals movement preparatory activity in the vegetative state. Front. Hum. Neurosci. 2011;5:5. doi: 10.3389/fnhum.2011.00005.
    1. Crone J.S., Bio B.J., Vespa P.M., Lutkenhoff E.S., Monti M.M. Restoration of thalamo-cortical connectivity after brain injury: Recovery of consciousness, complex behavior, or passage of time? J. Neurosci. Res. 2017;96:671–687. doi: 10.1002/jnr.24115.
    1. Duclos C., Dumont M., Arbour C., Paquet J., Blais H., Menon D.K., De Beaumont L., Bernard F., Gosselin N. Parallel recovery of consciousness and sleep in acute traumatic brain injury. Neurology. 2017;88:268–275. doi: 10.1212/WNL.0000000000003508.
    1. Laureys S., Faymonville M., Peigneuxad P., Damas P., Lambermont B., Del Fiore G., Degueldre C., Aerts J., Luxen A., Franck G., et al. Cortical processing of noxious somatosensory stimuli in the persistent vegetative state. Neuroimage. 2002;17:732–741. doi: 10.1006/nimg.2002.1236.
    1. Monti M.M. Cognition in the vegetative state. Annu. Rev. Clin. Psychol. 2012;8:431–454. doi: 10.1146/annurev-clinpsy-032511-143050.
    1. Bodien Y.G., Chatelle C., Edlow B.L. Functional Networks in Disorders of Consciousness. Semin. Neurol. 2017;37:485–502.
    1. Owen A.M., Coleman M.R., Boly M., Davis M.H., Laureys S., Pickard J.D. Detecting awareness in the vegetative state. Science. 2006;313:1402. doi: 10.1126/science.1130197.
    1. Riganello F., Cortese M.D., Dolce G., Sannita W.G. Visual pursuit response in the severe disorder of consciousness: Modulation by the central autonomic system and a predictive model. BMC Neurol. 2013;13:164. doi: 10.1186/1471-2377-13-164.
    1. Riganello F., Cortese M.D., Dolce G., Lucca L.F., Sannita W.G. The autonomic system functional state predicts responsiveness in DOC. J. Neurotrauma. 2015;32:1071–1077. doi: 10.1089/neu.2014.3539.
    1. Bruno M.A., Vanhaudenhuyse A., Thibaut A., Moonen G., Laureys S. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: Recent advances in our understanding of disorders of consciousness. J. Neurol. 2011;258:1373–1384. doi: 10.1007/s00415-011-6114-x.
    1. Formisano R., D’Ippolito M., Catani S. Functional locked-in syndrome as recovery phase of vegetative state. Brain Inj. 2013;27:1332. doi: 10.3109/02699052.2013.809555.
    1. Kotchoubey B., Lotze M. Instrumental methods in the diagnostics of locked-in syndrome. Restor. Neurol. Neurosci. 2013;31:25–40. doi: 10.3233/RNN-120249.
    1. Fernández-Espejo D., Rossit S., Owen A.M. A thalamocortical mechanism for the absence of overt motor behavior in covertly aware patients. JAMA Neurol. 2015;72:1442–1450. doi: 10.1001/jamaneurol.2015.2614.
    1. Soddu A., Gómez F., Heine L., Di Perri C., Bahri M.A., Voss H.U., Bruno M., Vanhaudenhuyse A., Phillips C., Demertzi A., et al. Correlation between resting state fMRI total neuronal activity and PET metabolism in healthy controls and patients with disorders of consciousness. Brain Behav. 2015;6:e00424. doi: 10.1002/brb3.424.
    1. Demertzi A., Antonopoulos G., Heine L., Voss H.U., Crone J.S., Angeles C.D.L., Bahri M.A., Di Perri C., Vanhaudenhuyse A., Charland-Verville V., et al. Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients. Brain. 2015;138:2619–2631. doi: 10.1093/brain/awv169.
    1. Di Perri C., Bahri M.A., Amico E., Thibaut A., Heine L., Antonopoulos G., Charland-Verville V., Wannez S., Gomez F., Hustinx R., et al. Neural correlates of consciousness in patients who have emerged from a minimally conscious state: A cross-sectional multimodal imaging study. Lancet Neurol. 2016;15:830–842. doi: 10.1016/S1474-4422(16)00111-3.
    1. Di Perri C., Bastianello S., Bartsch A.J., Pistarini C., Maggioni G., Magrassi L., Imberti R., Pichiecchio A., Vitali P., Laureys S., et al. Limbic hyperconnectivity in the vegetative state. Neurology. 2013;81:1417–1424. doi: 10.1212/WNL.0b013e3182a43b78.
    1. Laureys S., Faymonville M.-E., Luxen A., Lamy M., Franck G., Maquet P. Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet. 2000;355:1790–1791. doi: 10.1016/S0140-6736(00)02271-6.
    1. Monti M.M., Rosenberg M., Finoia P., Kamau E., Pickard J.D., Owen A.M. Thalamo-frontal connectivity mediates top-down cognitive functions in disorders of consciousness. Neurology. 2014;84:167–173. doi: 10.1212/WNL.0000000000001123.
    1. Giacino J.T., Kalmar K., Whyte J. The JFK coma recovery scale-revised: Measurement characteristics and diagnostic utility. Arch. Phys. Med. Rehabil. 2004;85:2020–2029. doi: 10.1016/j.apmr.2004.02.033.
    1. Chatelle C., De Val M.D., Catano A., Chaskis C., Seeldrayers P., Laureys S., Biston P., Schnakers C. Is the Nociception Coma Scale-Revised a useful clinical tool for managing pain in patients with disorders of consciousness? Clin. J. Pain. 2016;32:321–326.
    1. Chatelle C., Majerus S., Whyte J., Laureys S., Schnakers C. A sensitive scale to assess nociceptive pain in patients with disorders of consciousness. J. Neurol. Neurosurg. Psychiatry. 2012;83:1233–1237. doi: 10.1136/jnnp-2012-302987.
    1. Chatelle C., Hauger S.L., Martial C., Becker F., Eifert B., Boering D., Giacino J.T., Laureys S., Løvstad M., Maurer-Karattup P. Assessment of Nociception and Pain in Participants in an Unresponsive or Minimally Conscious State after Acquired Brain Injury: The Relation Between the Coma Recovery Scale-Revised and the Nociception Coma Scale-Revised. Arch. Phys. Med. Rehabil. 2018;99:1755–1762.
    1. Coghill R.C., McHaffie J.G., Yen Y.-F. Neural correlates of interindividual differences in the subjective experience of pain. Proc. Natl. Acad. Sci. USA. 2003;100:8538–8542. doi: 10.1073/pnas.1430684100.
    1. Schnakers C., Chatelle C., Vanhaudenhuyse A., Majerus S., LeDoux D., Boly M., Bruno M.-A., Boveroux P., Demertzi A., Moonen G., et al. The Nociception Coma Scale: A new tool to assess nociception in disorders of consciousness. Pain. 2010;148:215–219. doi: 10.1016/j.pain.2009.09.028.
    1. Schnakers C., Zasler N.D. Pain assessment and management in disorders of consciousness. Curr. Opin. Neurol. 2007;20:620–626. doi: 10.1097/WCO.0b013e3282f169d9.
    1. Riganello F., Arcuri F.C., Candelieri A., Guglielmino F., Dolce G., Sannita W., Schnakers C. A study of the reliability of the Nociception Coma Scale. Clin. Rehabil. 2014;29:388–393. doi: 10.1177/0269215514546767.
    1. Simini B. Patients’ perceptions of intensive care. Lancet. 1999;354:571–572. doi: 10.1016/S0140-6736(99)02728-2.
    1. Boly M., Faymonville M.-E., Schnakers C., Peigneux P., Lambermont B., Phillips C., Lancellotti P., Luxen A., Lamy M., Moonen G., et al. Perception of pain in the minimally conscious state with PET activation: An observational study. Lancet Neurol. 2008;7:1013–1020. doi: 10.1016/S1474-4422(08)70219-9.
    1. Celesia G.G., Sannita W.G. Can patients in vegetative state experience pain and have conscious awareness? Neurology. 2013;80:328–329. doi: 10.1212/WNL.0b013e31827f0928.
    1. Markl A., Yu T., Vogel D., Muller F., Kotchoubey B., Lang S. Brain processing of pain in patients with unresponsive wakefulness syndrome. Brain Behav. 2013;3:95–103. doi: 10.1002/brb3.110.
    1. Yu T., Lang S., Vogel D., Markl A., Mueller F., Kotchoubey B. Patients with unresponsive wakefulness syndrome respond to the pain cries of other people. Neurology. 2013;80:345–352. doi: 10.1212/WNL.0b013e31827f0846.
    1. Graham M. Can they Feel? The Capacity for Pain and Pleasure in Patients with Cognitive Motor Dissociation. Neuroethics. 2019;12:153–169. doi: 10.1007/s12152-018-9361-z.
    1. Kassubek J., Juengling F.D., Els T., Spreer J., Herpers M., Krause T., Moser E., Lücking C.H. Activation of a residual cortical network during painful stimulation in long-term postanoxic vegetative state: A OPET study. J. Neurol. Sci. 2003;212:85–91. doi: 10.1016/S0022-510X(03)00106-0.
    1. Schnakers C., Chatelle C., Majerus S., Gosseries O., de Val M., Laureys S. Assessment and detection of pain in noncommunicative severely brain-injured patients. Expert Rev. Neurother. 2010;10:1725–1731. doi: 10.1586/ern.10.148.
    1. Zanatta P., Benvenuti S.M., Baldanzi F., Bendini M., Saccavini M., Tamari W., Palomba D., Bosco E. Pain-related somatosensory evoked potentials and functional brain magnetic resonance in the evaluation of neurologic recovery after cardiac arrest: A case study of three patients. Scand. J. Trauma Resusc. Emerg. Med. 2012;20:22. doi: 10.1186/1757-7241-20-22.
    1. Laureys S. The neural correlate of (un) awareness: Lessons from the vegetative state. Trends Cogn. Sci. 2005;9:556–559. doi: 10.1016/j.tics.2005.10.010.
    1. Giacino J.T., Hirsch J., Schiff N., Laureys S. Functional neuroimaging applications for assessment and rehabilitation planning in patients with disorders of consciousness. Arch. Phys. Med. Rehabil. 2006;87:S67–S76. doi: 10.1016/j.apmr.2006.07.272.
    1. Pistoia F., Sacco S., Stewart J., Sarà M., Carolei A. Disorders of Consciousness: Painless or Painful Conditions?—Evidence from Neuroimaging Studies. Brain Sci. 2016;6:47. doi: 10.3390/brainsci6040047.
    1. Schnakers C., Chatelle C., Demertzi A., Majerus S., Laureys S. What about pain in disorders of consciousness? AAPS J. 2012;14:437–444. doi: 10.1208/s12248-012-9346-5.
    1. Chatelle C., Thibaut A., Whyte J., De Val M.D., Laureys S., Schnakers C. Pain issues in disorders of consciousness. Brain Inj. 2014;28:1202–1208. doi: 10.3109/02699052.2014.920518.
    1. Riganello F., Soddu A., Tonin P. Addressing Pain for a Proper Rehabilitation Process in Patients with Severe Disorders of Consciousness. Front. Pharmacol. 2021;12:628980.
    1. Dolce G., Lucca L.F. The vegetative state updated. J. Psychophysiol. 2010;24:107–111. doi: 10.1027/0269-8803/a000020.
    1. Peterson A., Cruse D., Naci L., Weijer C., Owen A.M. Risk, diagnostic error, and the clinical science of consciousness. NeuroImage Clin. 2015;7:588–597. doi: 10.1016/j.nicl.2015.02.008.
    1. Peterson A. Consilience, clinical validation, and global disorders of consciousness. Neurosci. Conscious. 2016;2016:niw011. doi: 10.1093/nc/niw011.
    1. Hauger S.L., Schanke A.K., Andersson S., Chatelle C., Schnakers C., Løvstad M. The Clinical Diagnostic Utility of Electrophysiological Techniques in Assessment of Patients with Disorders of Consciousness Following Acquired Brain Injury: A Systematic Review. J. Head Trauma Rehabil. 2017;32:185–196. doi: 10.1097/HTR.0000000000000267.
    1. Latremoliere A., Woolf C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain. 2009;10:895–926. doi: 10.1016/j.jpain.2009.06.012.
    1. ASP Taxonomy Working Group Classification of chronic pain. Descriptions of chronic pain syndromes and definitions of pain terms. Prepared by the International Association for the Study of Pain, Subcommittee on Taxonomy. (1986) Pain. Suppl. 1986;3:S1–S226.
    1. American Congress of Rehabilitation Medicine, Brain Injury-Interdisciplinary Special Interest Group, Disorders of Consciousness Task Force. Seel R.T., Sherer M., Whyte J., Katz D.I., Giacino J.T., Rosenbaum A.M., Hammond F.M., Kalmar K., Pape T.L., et al. Assessment scales for disorders of consciousness: Evidence-based recommendations for clinical practice and research. Arch. Phys. Med. Rehabil. 2010;91:1795–1813. doi: 10.1016/j.apmr.2010.07.218.
    1. Harrington M.H. Advances in Neuroimaging and the Vegetative State: Implications for End-of-Life Care. Hamline Law Rev. 2013;36:213.
    1. Riganello F., Macrì S., Alleva E., Petrini C., Soddu A., Leòn-Carriòn J., Dolce G. Pain Perception in Unresponsive Wakefulness Syndrome May Challenge the Interruption of Artificial Nutrition and Hydration: Neuroethics in Action. Front. Neurol. 2016;7:202. doi: 10.3389/fneur.2016.00202.
    1. Leo A., Naro A., Cannavò A., Pisani L.R., Bruno R., Salviera C., Bramanti P., Calabrò R. Could autonomic system assessment be helpful in disorders of consciousness diagnosis? A neurophysiological study. Exp. Brain Res. 2016;234:2189–2199. doi: 10.1007/s00221-016-4622-8.
    1. Riganello F., Larroque S.K., Di Perri C., Prada V., Sannita W.G., Laureys S. Measures of CNS-Autonomic Interaction and Responsiveness in Disorder of Consciousness. Front. Neurosci. 2019;13:530. doi: 10.3389/fnins.2019.00530.
    1. Friedman B.H. An autonomic flexibility-neurovisceral integration model of anxiety and cardiac vagal tone. Biol. Psychol. 2007;74:185–199. doi: 10.1016/j.biopsycho.2005.08.009.
    1. Thayer J.F., Åhs F., Fredrikson M., Sollers J.J., Wager T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012;36:747–756. doi: 10.1016/j.neubiorev.2011.11.009.
    1. Riganello F. Responsiveness and the autonomic control-CNS two-way interaction in disorders of consciousness. In: Monti M.M., Sannita W.G., editors. Brain Function and Responsiveness in Disorders of Consciousness. Springer; Cham, Switzerland: 2016. pp. 145–155.
    1. Berntson G.G., Cacioppo J.T. Heart rate variability: Stress and psychiatric conditions. In: Malik M., Camm A.J., editors. Dynamic Electrocardiography. Blackwell/Futura; New York, NY, USA: 2004. pp. 57–64.
    1. Hagemann D., Waldstein S.R., Thayer J.F. Central and autonomic nervous system integration in emotion. Brain Cogn. 2003;52:79–87. doi: 10.1016/S0278-2626(03)00011-3.
    1. Riganello F., Dolce G., Sannita W. Heart rate variability and the central autonomic network in the severe disorder of consciousness. J. Rehabil. Med. 2012;44:495–501. doi: 10.2340/16501977-0975.
    1. Thayer J.F., Lane R.D. Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009;33:81–88. doi: 10.1016/j.neubiorev.2008.08.004.
    1. Thayer J.F., Sternberg E. Beyond heart rate variability. Ann. N. Y. Acad. Sci. 2006;1088:361–372. doi: 10.1196/annals.1366.014.
    1. Devalle G., Castiglioni P., Arienti C., Abbate C., Mazzucchi A., Agnello L., Merati G. Cardio-respiratory autonomic responses to nociceptive stimuli in patients with disorders of consciousness. PLoS ONE. 2018;13:e0201921. doi: 10.1371/journal.pone.0201921.
    1. Riganello F., Chatelle C., Schnakers C., Laureys S. Heart Rate Variability as an Indicator of Nociceptive Pain in Disorders of Consciousness? J. Pain Symptom Manag. 2019;57:47–56. doi: 10.1016/j.jpainsymman.2018.09.016.
    1. Turkstra L.Y.N.S. Brain injury. Brain Inj. 1995;9:61–80. doi: 10.3109/02699059509004573.
    1. Luauté J., Dubois A., Heine L., Guironnet C., Juliat A., Gaveau V., Tillmann B., Perrin F. Electrodermal reactivity to emotional stimuli in healthy subjects and patients with disorders of consciousness. Ann. Phys. Rehabil. Med. 2018;61:401–406. doi: 10.1016/j.rehab.2018.04.007.
    1. Hildebrandt H., Zieger A., Engel A., Fritz K.W., Bussmann B. Differentiation of autonomic nervous activity in different stages of coma displayed by power spectrum analysis of heart rate variability. Eur. Arch. Psychiatry Clin. Neurosci. 1998;248:46–52. doi: 10.1007/s004060050016.
    1. Keller I., Hülsdunk A., Müller F. The influence of acoustic and tactile stimulation on vegetative parameters and EEG in persistent vegetative state. Funct. Neurol. 2007;22:159–163.
    1. De Tommaso M., Navarro J., Ricci K., Lorenzo M., Lanzillotti C., Colonna F., Resta M., Lancioni G., Livrea P. Pain in prolonged disorders of consciousness: Laser evoked potentials findings in patients with vegetative and minimally conscious states. Brain Inj. 2013;27:962–972. doi: 10.3109/02699052.2013.775507.
    1. De Tommaso M., Navarro J., Lanzillotti C., Ricci K., Buonocunto F., Livrea P., Lancioni G.E. Cortical responses to salient nociceptive and not nociceptive stimuli in vegetative and minimal conscious state. Front. Hum. Neurosci. 2015;9:17. doi: 10.3389/fnhum.2015.00017.
    1. Venturella I., Crivelli D., Fossati M., Fiorillo F., Balconi M. EEG and autonomic responses to nociceptive stimulation in disorders of consciousness. J. Clin. Neurosci. 2019;60:101–106. doi: 10.1016/j.jocn.2018.09.020.
    1. De Salvo S., Naro A., Bonanno L., Russo M., Muscarà N., Bramanti P., Marino S. Assessment of nociceptive system in vegetative and minimally conscious state by using laser evoked potentials. Brain Inj. 2015;29:1467–1474. doi: 10.3109/02699052.2015.1071430.
    1. Naro A., Russo M., Leo A., Rifici C., Pollicino P., Bramanti P., Calabrò R. Cortical Responsiveness to Nociceptive Stimuli in Patients with Chronic Disorders of Consciousness: Do C-Fiber Laser Evoked Potentials Have a Role? PLoS ONE. 2015;10:e0144713.
    1. Naro A., Leo A., Russo M., Quartarone A., Bramanti P., Calabrò R.S. Shaping thalamo-cortical plasticity: A marker of cortical pain integration in patients with post-anoxic unresponsive wakefulness syndrome? Brain Stimul. 2015;8:97–104. doi: 10.1016/j.brs.2014.09.001.
    1. Naro A., Leo A., Cannavò A., Buda A., Bramanti P., Calabrò R.S. Do unresponsive wakefulness syndrome patients feel pain? Role of laser-evoked potential-induced gamma-band oscillations in detecting cortical pain processing. Neuroscience. 2016;317:141–148. doi: 10.1016/j.neuroscience.2016.01.009.
    1. Aricò I., Naro A., Pisani L.R., Leo A., Muscarà N., De Salvo S., Silvestri R., Bramanti P., Calabrò R.S. Could combined sleep and pain evaluation be useful in the diagnosis of disorders of consciousness (DOC)? Preliminary findings. Brain Inj. 2016;30:159–163. doi: 10.3109/02699052.2015.1089595.
    1. Naro A., Bramanti P., Bramanti A., Calabrò R.S. Assessing pain in patients with chronic disorders of consciousness: Are we heading in the right direction? Conscious. Cogn. 2017;55:148–155. doi: 10.1016/j.concog.2017.08.009.
    1. Calabrò R.S., Naro A., Manuli A., Leo A., De Luca R., Lo Buono V., Russo M., Bramanti A., Bramanti P. Pain perception in patients with chronic disorders of consciousness: What can limbic system tell us? Clin. Neurophysiol. 2017;128:454–462. doi: 10.1016/j.clinph.2016.12.011.
    1. Naro A., Leo A., Bramanti P., Calabrò R.S. Moving Toward Conscious Pain Processing Detection in Chronic Disorders of Consciousness: Anterior Cingulate Cortex Neuromodulation. J. Pain. 2015;16:1022–1031. doi: 10.1016/j.jpain.2015.06.014.
    1. Naro A., Calabrò R.S., Pollicino P., Lombardo C., Bramanti P. Unexpected recovery from a vegetative state or misdiagnosis? Lesson learned from a case report. NeuroRehabilitation. 2017;41:735–738. doi: 10.3233/NRE-172160.
    1. Giacino J.T., Katz D.I., Schiff N.D., Whyte J., Ashman E.J., Ashwal S., Barbano R., Hammond F.M., Laureys S., Ling G., et al. Practice guideline update recommendations summary: Disorders of consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Neurology. 2018;91:450–460.
    1. Dolce G., Riganello F., Quintieri M., Candelieri A., Conforti D. Personal interaction in the vegetative state: A data-mining study. J. Psychophysiol. 2008;22:150–156. doi: 10.1027/0269-8803.22.3.150.
    1. Gutierrez J., Machado C., Estévez M., Olivares A., Hernández H., Perez J., Beltran C., Leisman G. Heart rate variability changes induced by auditory stimulation in persistent vegetative state. Int. J. Disabil. Hum. Dev. 2010;9:357–362. doi: 10.1515/IJDHD.2010.041.
    1. Laureys S., Perrin F., Brédart S. Self-consciousness in non-communicative patients. Conscious Cogn. 2007;16:722–741. doi: 10.1016/j.concog.2007.04.004.
    1. Span-Sluyter C.A.M.F.H., Lavrijsen J.C.M., Van Leeuwen E., Koopmans R.T.C.M. Moral dilemmas and conflicts concerning patients in a vegetative state/unresponsive wakefulness syndrome: Shared or non-shared decision making? A qualitative study of the professional perspective in two moral case deliberations. BMC Med. Ethics. 2018;19:10. doi: 10.1186/s12910-018-0247-8.
    1. Riganello F., Candelieri A., Dolce G., Sannita W.G. Residual emotional processing in the vegetative state: A scientific issue? Clin. Neurophysiol. 2011;122:1061–1062. doi: 10.1016/j.clinph.2010.09.006.
    1. Andrews K., Murphy L., Munday R., Littlewood C. Misdiagnosis of the vegetative state: Retrospective study in a rehabilitation unit. BMJ. 1996;313:13–16. doi: 10.1136/bmj.313.7048.13.
    1. Bosco A., Lancioni G.E., Belardinelli M.O., Singh N.N., O’Reilly M.F., Sigafoos J. Vegetative state: Efforts to curb misdiagnosis. Cogn. Process. 2010;11:87–90. doi: 10.1007/s10339-009-0355-y.
    1. Gill-Thwaites H. Lotteries, loopholes and luck: Misdiagnosis in the vegetative state patient. Brain Inj. 2006;20:1321–1328. doi: 10.1080/02699050601081802.
    1. Laureys S. Death, unconsciousness and the brain. Nat. Rev. Neurosci. 2005;6:899–909. doi: 10.1038/nrn1789.
    1. Demertzi A., Schnakers C., LeDoux D., Chatelle C., Bruno M.-A., Vanhaudenhuyse A., Boly M., Moonen G., Laureys S. Different beliefs about pain perception in the vegetative and minimally conscious states: A European survey of medical and paramedical professionals. Prog. Brain Res. 2009;177:329–338.
    1. Cruse D., Owen A.M. Consciousness revealed: New insights into the vegetative and minimally conscious states. Curr. Opin. Neurol. 2010;23:656–660. doi: 10.1097/WCO.0b013e32833fd4e7.
    1. Balconi M., Arangio R. The relationship between coma near coma, disability ratings, and event-related potentials in patients with disorders of consciousness: A semantic association task. Appl. Psychophysiol. Biofeedback. 2015;40:327–337. doi: 10.1007/s10484-015-9304-y.
    1. Balconi M., Arangio R., Guarnerio C. Consciousness and N400 ERP measures in response to a semantic task. J. Neuropsychiatry Clin. Neurosci. 2013;25:237–243. doi: 10.1176/appi.neuropsych.12090227.
    1. Boly M., Faymonville M.-E., Peigneux P., Lambermont B., Damas F., Luxen A., Lamy M., Moonen G., Maquet P., Laureys S. Cerebral processing of auditory and noxious stimuli in severely brain injured patients: Differences between VS and MCS. Neuropsychol. Rehabil. 2005;15:283–289. doi: 10.1080/09602010443000371.
    1. Garbarino S., Sannita W.G. DoC: A pathophysiological continuum with high variabiity? Neurology. 2015 doi: 10.13140/RG.2.1.1541.0006.
    1. King D.R., Ogilvie M.P., Pereira B.M., Chang Y., Manning R.J., Conner J.A., Schulman C.I., McKenney M.G., Proctor K.G. Heart rate variability as a triage tool in patients with trauma during prehospital helicopter transport. J. Trauma. 2009;67:436–440.
    1. Ryan M.L., Thorson C.M., Otero C.A., Vu T., Proctor K.G. Clinical applications of heart rate variability in the triage and assessment of traumatically injured patients. Anesthesiol. Res. Pract. 2011;2011:e416590. doi: 10.1155/2011/416590.
    1. Sannita W.G. Responsiveness in DoC and individual variability. Front. Hum. Neurosci. 2015;9:270. doi: 10.3389/fnhum.2015.00270.
    1. Wijnen V.J., Heutink M., van Boxtel G.J., Eilander H.J., de Gelder B. Autonomic reactivity to sensory stimulation is related to consciousness level after severe traumatic brain injury. Clin. Neurophysiol. 2006;117:1794–1807. doi: 10.1016/j.clinph.2006.03.006.
    1. Abbate C., Trimarchi P.D., Basile I., Mazzucchi A., Devalle G. Sensory stimulation for patients with disorders of consciousness: From stimulation to rehabilitation. Front. Hum. Neurosci. 2014;8:616.
    1. Bekinschtein T.A., Golombek D.A., Simonetta S.H., Coleman M.R., Manes F.F. Circadian rhythms in the vegetative state. Brain Inj. 2009;23:915–919. doi: 10.1080/02699050903283197.
    1. Blume C., Lechinger J., Santhi N., Del Giudice R., Gnjezda M.-T., Pichler G., Scarpatetti M., Donis J., Michitsch G., Schabus M. Significance of circadian rhythms in severely brain-injured patients: A clue to consciousness? Neurology. 2017;88:1933–1941.
    1. Candelieri A., Cortese M.D., Dolce G., Riganello F., Sannita W.G. Visual pursuit: Within-day variability in the severe disorder of consciousness. J. Neurotrauma. 2011;28:2013–2017. doi: 10.1089/neu.2011.1885.
    1. Kotchoubey B., Lang S., Mezger G., Schmalohr D., Schneck M., Semmler A., Bostanov V., Birbaumer N. Information processing in severe disorders of consciousness: Vegetative state and minimally conscious state. Clin. Neurophysiol. 2005;116:2441–2453. doi: 10.1016/j.clinph.2005.03.028.
    1. Lee H.Y., Park J.H., Kim A.R., Park M., Kim T.-W. Neurobehavioral recovery in patients who emerged from prolonged disorder of consciousness: A retrospective study. BMC Neurol. 2020;20:198. doi: 10.1186/s12883-020-01758-5.
    1. Giacino J.T. Disorders of consciousness after acquired brain injury: The state of the science. Nat. Rev. Neurol. 2014;10:99–114. doi: 10.1038/nrneurol.2013.279.
    1. Laureys S., Owen A.M., Schiff N.D. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 2004;3:537–546. doi: 10.1016/S1474-4422(04)00852-X.
    1. Owen A.M., Coleman M.R., Boly M., Davis M.H., Laureys S., Jolles D., Pickard J.D. Response to comments on “Detecting awareness in the vegetative state”. Science. 2007;315:1221. doi: 10.1126/science.1135583.
    1. Stender J., Gosseries O., Bruno M.A., Charland-Verville V., Vanhaudenhuyse A., Demertzi A., Chatelle C., Thonnard M., Thibaut A., Heine L., et al. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: A clinical validation study. Lancet. 2014;384:514–522. doi: 10.1016/S0140-6736(14)60042-8.
    1. Enøe C., Georgiadis M.P., Johnson W.O. Estimation of sensitivity and specificity of diagnostic tests and disease prevalence when the true disease state is unknown. Prev. Vet. Med. 2000;45:61–81. doi: 10.1016/S0167-5877(00)00117-3.
    1. Cruse D., Chennu S., Chatelle C., Bekinschtein T.A., Fernández-Espejo D., Pickard J.D., Laureys S., Owen O.M. Bedside detection of awareness in the vegetative state: A cohort study. Lancet. 2011;378:2088–2094. doi: 10.1016/S0140-6736(11)61224-5.
    1. Goldfine A.M., Bardin J.C., Noirhomme Q., Fins J.J., Schiff N.D., Victor J.D. Reanalysis of “Bedside detection of awareness in the vegetative state: A cohort study”. Lancet. 2013;381:289–291. doi: 10.1016/S0140-6736(13)60125-7.
    1. Bayne T., Hohwy J. Global disorders of consciousness. WIREs Cogn. Sci. 2014;5:129–138. doi: 10.1002/wcs.1270.
    1. Shea N., Bayne T. The vegetative state and the science of consciousness. Br. J. Philos. Sci. 2010;61:459–484. doi: 10.1093/bjps/axp046.
    1. Demertzi A., Racine E., Bruno M.A., Ledoux D., Gosseries O., Vanhaudenhuyse A., Thonnard M., Soddu A., Moonen G., Laureys S. Pain perception in disorders of consciousness: Neuroscience, clinical care, and ethics in dialogue. Neuroethics. 2013;6:37–50. doi: 10.1007/s12152-011-9149-x.
    1. Chatelle C., Thibaut A., Bruno M.A., Boly M., Bernard C., Hustinx R., Schnakers C., Laureys S. Nociception coma scale-revised scores correlate with metabolism in the anterior cingulate cortex. Neurorehabilit. Neural Repair. 2014;28:149–152. doi: 10.1177/1545968313503220.
    1. McQuillen M.P. Can people who are unconscious or in the “vegetative state” perceive pain? Issues Law Med. 1991;6:373–383.
    1. Fossati M.B., Filippini M., Bonin E., Bornheim S., Lejeune N., Bodart O., Laureys S., Thibaut A., Chatelle C. Pain management in disorders of consciousness; Proceedings of the Frontier Neuroscience Conference Abstract: Belgian Brain Congress 2018—Belgian Brain Council; Liege, Belgium. 9–19 October 2018;
    1. Chang P.F., Arendt-Nielsen L., Chen A.C.N. Dynamic changes and spatial correlation of EEG activities during cold pressor test in man. Brain Res. Bull. 2002;57:667–675. doi: 10.1016/S0361-9230(01)00763-8.
    1. Goudman L., Laton J., Brouns R., Nagels G., Huysmans E., Buyl R., Ickmans K., Nijs J., Moens M. Cortical mapping of painful electrical stimulation by quantitative electroencephalography: Unraveling the time-frequency-channel domain. J. Pain. Res. 2017;10:2675–2685. doi: 10.2147/JPR.S145783.
    1. Shao S., Shen K., Yu K., Wilder-Smith E.P.V., Li X. Frequency-domain EEG source analysis for acute tonic cold pain perception. Clin. Neurophysiol. 2012;123:2042–2049. doi: 10.1016/j.clinph.2012.02.084.
    1. Huber M.T., Bartling J., Pachur D., Woikowsky-Biedau S.V., Lautenbacher S. EEG responses to tonic heat pain. Exp. Brain Res. 2006;173:14–24. doi: 10.1007/s00221-006-0366-1.
    1. Dindo L., Fowles D.C. The skin conductance orienting response to semantic stimuli: Significance can be independent of arousal. Psychophysiology. 2008;45:111–118. doi: 10.1111/j.1469-8986.2007.00604.x.
    1. Sokolov E.N. Higher nervous functions: The orienting reflex. Annu. Rev. Physiol. 1963;25:545–580. doi: 10.1146/annurev.ph.25.030163.002553.
    1. Barry R.J. Habituation of the orienting reflex and the development of Preliminary Process Theory. Neurobiol. Learn. Mem. 2009;92:235–242. doi: 10.1016/j.nlm.2008.07.007.
    1. Bauer R.M. Autonomic recognition of names and faces in prosopagnosia: A neuropsychological application of the guilty knowledge test. Neuropsychologia. 1984;22:457–469. doi: 10.1016/0028-3932(84)90040-X.
    1. Goldfine A.M., Victor J.D., Conte M.M., Bardin J.C., Schiff N.D. Determination of awareness in patients with severe brain injury using EEG power spectral analysis. Clin. Neurophysiol. 2011;122:2157–2168. doi: 10.1016/j.clinph.2011.03.022.
    1. Cruse D., Chennu S., Fernández-Espejo D., Payne W.L., Young G.B., Owen A.M. Detecting awareness in the vegetative state: Electroencephalographic evidence for attempted movements to command. PLoS ONE. 2012;7:e49933. doi: 10.1371/journal.pone.0049933.
    1. Cruse D., Chennu S., Chatelle C., Fernández-Espejo D., Bekinschtein T.A., Pickard J.D., Laureys S., Owen A.M. Relationship between etiology and covert cognition in the minimally conscious state. Neurology. 2012;78:816–822. doi: 10.1212/WNL.0b013e318249f764.
    1. Lulé D., Noirhomme Q., Kleih S.C., Chatelle C., Halder S., Demertzi A., Bruno M.-A., Gosseries A., Vanhaudenhuyse A., Schnakers C., et al. Probing command following in patients with disorders of consciousness using a brain-computer interface. Clin. Neurophysiol. 2013;124:101–106. doi: 10.1016/j.clinph.2012.04.030.
    1. Laureys S., Schiff N.D. Coma and consciousness: Paradigms (re)framed by neuroimaging. NeuroImage. 2012;61:478–491. doi: 10.1016/j.neuroimage.2011.12.041.
    1. Billeri L., Filoni S., Russo E.F., Portaro S., Militi D., Calabrò R.S., Naro A. Toward Improving Diagnostic Strategies in Chronic Disorders of Consciousness: An Overview on the (Re-)Emergent Role of Neurophysiology. Brain Sci. 2020;10:42. doi: 10.3390/brainsci10010042.
    1. Naro A., Calabrò R.S., Nagamine T. Frontiers in Detecting Consciousness: The Growing Use of EEG Analysis. Innov. Clin. Neurosci. 2020;17:8–9.
    1. Tomaiuolo F., Cecchetti L., Gibson R.M., Logi F., Owen A.M., Malasoma F., Cozza S., Pietrini P., Ricciardi E. Progression from Vegetative to Minimally Conscious State Is Associated with Changes in Brain Neural Response to Passive Tasks: A Longitudinal Single-Case Functional MRI Study. J. Int. Neuropsychol. Soc. 2016;22:620–630. doi: 10.1017/S1355617716000485.
    1. Pistoia F., Sacco S., Sarà M., Franceschini M., Carolei A. Intrathecal baclofen: Effects on spasticity, pain, and consciousness in disorders of consciousness and locked-in syndrome. Curr. Pain Headache Rep. 2015;19:466. doi: 10.1007/s11916-014-0466-8.
    1. Sarà M., Pistoia F., Mura E., Onorati P., Govoni S. Intrathecal baclofen in patients with persistent vegetative state: 2 hypotheses. Arch. Phys. Med. Rehabil. 2009;90:1245–1249. doi: 10.1016/j.apmr.2009.01.012.
    1. Pistoia F., Mura E., Govoni S., Fini M., Sarà M. Awakenings and awareness recovery in disorders of consciousness: Is there a role for drugs? CNS Drugs. 2010;24:625–638. doi: 10.2165/11535940-000000000-00000.
    1. Pistoia F., Sarà M., Sacco S., Franceschini M., Carolei A. Silencing the brain may be better than stimulating it. The GABA Effect. Curr. Pharm. Des. 2014;20:4154–4166. doi: 10.2174/13816128113196660649.
    1. Mura E., Pistoia F., Sara M., Sacco S., Carolei A., Govoni S. Pharmacological modulation of the state of awareness in patients with disorders of consciousness: An overview. Curr. Pharm. Des. 2014;20:4121–4139. doi: 10.2174/13816128113196660658.
    1. Yamamoto T., Katayama Y., Obuchi T., Kobayashi K., Oshima H., Fukaya C. Deep brain stimulation and spinal cord stimulation for vegetative state and minimally conscious state. World Neurosurg. 2013;80:e1–e9. doi: 10.1016/j.wneu.2012.04.010.
    1. Giacino J., Fins J.J., Machado A., Schiff N.D. Central thalamic deep brain stimulation to promote recovery from chronic posttraumatic minimally conscious state: Challenges and opportunities. Neuromodulation. 2012;15:339–349. doi: 10.1111/j.1525-1403.2012.00458.x.
    1. Thibaut A., Bruno M.A., Ledoux D., Demertzi A., Laureys S. TDCS in patients with disorders of consciousness: Sham-controlled randomized double-blind study. Neurology. 2014;82:1112–1118. doi: 10.1212/WNL.0000000000000260.
    1. Pistoia F., Sacco S., Carolei A., Sarà M. Corticomotor facilitation in vegetative state: Results of a pilot study. Arch. Phys. Med. Rehabil. 2013;94:1599–1606. doi: 10.1016/j.apmr.2013.01.019.
    1. Gosseries O., Pistoia F., Charland-Verville V., Carolei A., Sacco S., Laureys S. The role of neuroimaging techniques in establishing diagnosis, prognosis and therapy in disorders of consciousness. Open Neuroimaging J. 2016;10:52–68. doi: 10.2174/1874440001610010052.
    1. Laureys S., Giacino J.T., Schiff N.D., Schabus M., Owen A.M. How should functional imaging of patients with disorders of consciousness contribute to their clinical rehabilitation needs? Curr. Opin. Neurol. 2006;19:520–527. doi: 10.1097/WCO.0b013e3280106ba9.
    1. Noirhomme Q., Lesenfants D., Gomez F., Soddu A., Schrouff J., Garraux G., Luxen A., Phillips C., Laureys S. Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions. Neuroimage Clin. 2014;4:687–694. doi: 10.1016/j.nicl.2014.04.004.
    1. Cruse D., Beukema S., Chennu S., Malins J.G., Owen A.M., McRae K. The reliability of the N400 in single subjects: Implications for patients with disorders of consciousness. Neuroimage Clin. 2014;4:788–799. doi: 10.1016/j.nicl.2014.05.001.
    1. Forgacs P.B., Conte M.M., Fridman E.A., Voss H.U., Victor J.D., Schiff N.D. Preservation of Electroencephalographic Organization in patients with impaired consciousness and imaging-based evidence of command-following. Ann. Neurol. 2014;76:869–879. doi: 10.1002/ana.24283.
    1. Gibson R.M., Fernández-Espejo D., Gonzalez-Lara L.E., Kwan B.Y., Lee D.H., Owen A.M., Cruse D. Multiple tasks and neuroimaging modalities increase the likelihood of detecting covert awareness in patients with disorders of consciousness. Front. Hum. Neurosci. 2014;8:950. doi: 10.3389/fnhum.2014.00950.
    1. Cruse D., Gantner I., Soddu A., Owen A.M. Lies, damned lies and diagnoses: Estimating the clinical utility of assessments of covert awareness in the vegetative state. Brain Inj. 2014;28:1197–1201. doi: 10.3109/02699052.2014.920517.
    1. Coleman M.R., Davis M.H., Rodd J.M., Robson T., Ali A., Owen A.M., Pickard J.D. Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain. 2009;132:2541–2552. doi: 10.1093/brain/awp183.

Source: PubMed

3
Iratkozz fel