Diet, Microbiota, and Gut Permeability-The Unknown Triad in Rheumatoid Arthritis

Catarina Sousa Guerreiro, Ângelo Calado, Joana Sousa, João Eurico Fonseca, Catarina Sousa Guerreiro, Ângelo Calado, Joana Sousa, João Eurico Fonseca

Abstract

Growing experimental and clinical evidence suggests that a chronic inflammatory response induced by gut dysbiosis can critically contribute to the development of rheumatic diseases, including rheumatoid arthritis (RA). Of interest, an adherence to a Mediterranean diet has been linked to a reduction in mortality and morbidity in patients with inflammatory diseases. Diet and intestinal microbiota are modifying factors that may influence intestinal barrier strength, functional integrity, and permeability regulation. Intestinal microbiota may play a crucial role in RA pathogenesis, but up to now no solid data has clarified a mechanistic relationship between gut microbiota and the development of RA. Nonetheless, microbiota composition in subjects with RA differs from that of controls and this altered microbiome can be partially restored after prescribing disease modifying antirheumatic drugs. High levels of Prevotella copri and similar species are correlated with low levels of microbiota previously associated with immune regulating properties. In addition, some nutrients can alter intestinal permeability and thereby influence the immune response without a known impact on the microbiota. However, critical questions remain to be elucidated, such as the way microbiome fluctuates in relation to diet, and how disease activity may be influenced by changes in diet, microbiota or diet-intestinal microbiota equilibrium.

Keywords: Mediterranean Diet; diet; gut microbiota; gut permeability; rheumatoid arthritis.

Figures

Figure 1
Figure 1
Effect of microbiota and diet in RA (onset and its manifestations).

References

    1. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. (2011) 365:2205–19. 10.1056/NEJMra1004965
    1. Ciccia F, Ferrante A, Guggino G, Triolo G. The role of the gastrointestinal tract in the pathogenesis of rheumatic diseases. Best Pract Res Clin Rheumatol. (2016) 30:889–900. 10.1016/j.berh.2016.10.003
    1. Zhong D, Wu C, Zeng X, and Wang Q. The role of gut microbiota in the pathogenesis of rheumatic diseases. Clin Rheumatol. (2018) 37:25–34. 10.1007/s10067-017-3821-4
    1. Lerner A, Matthias T. Rheumatoid arthritis–celiac disease relationship: joints get that gut feeling. Autoimmun Rev. (2015) 14:1038–47. 10.1016/j.autrev.2015.07.007
    1. Van Spaendonk H, Ceuleers H, Witters L, Patteet E, Joossens J, Augustyns K, et al. Regulation of intestinal permeability: the role of proteases. World J Gastroenterol. (2017) 23:2106–23. 10.3748/wjg.v23.i12.2106
    1. Deane KD, Demoruelle MK, Kelmenson LB, Kuhn KA, Norris JM, Holers VM. Genetic and environmental risk factors for rheumatoid arthritis. Best Pract Res Clin Rheumatol. (2017) 31:3–18. 10.1016/j.berh.2017.08.003
    1. Mu Q, Kirby J, Reilly CM, Luo XM. Leaky gut as a danger signal for autoimmune diseases. Front Immunol. (2017) 8:598. 10.3389/fimmu.2017.00598
    1. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. . Linking long-term dietary patterns with gut microbial enterotypes. Science (2011) 334:105–8. 10.1126/science.1208344
    1. Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke JD, Serino M, et al. . Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterol. (2014) 14:189. 10.1186/s12876-014-0189-7
    1. Horta-Baas G, Romero-Figueroa MDS, Montiel-Jarquín AJ, Pizano-Zárate ML, García-Mena J, Ramírez-Durán N. Intestinal dysbiosis and rheumatoid arthritis: a link between gut microbiota and the pathogenesis of rheumatoid arthritis. J Immunol Res. (2017) 2017:1–13. 10.1155/2017/4835189
    1. De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M. Nutritional keys for intestinal barrier modulation. Front Immunol. (2015) 6:612 10.3389/fimmu.2015.00612
    1. Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J, et al. . An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis.Genome Med. (2016) 8:43. 10.1186/s13073-016-0299-7
    1. Diamanti AP, Rosado MM, Laganà B, D'Amelio R. Microbiota and chronic inflammatory arthritis: an interwoven link. J Transl Med. (2016) 14:233. 10.1186/s12967-016-0989-3
    1. Kim D, Yoo SA, Kim WU. Gut microbiota in autoimmunity: potential for clinical applications. Arch Pharm Res. (2016) 39:1565–76. 10.1007/s12272-016-0796-7
    1. Vaahtovuo J, Munukka E, Korkeamaki M, Luukkainen R, Toivanen P. Fecal microbiota in early rheumatoid arthritis. J Rheumatol. (2008) 35:1500–5.
    1. Marietta EV, Murray JA, Luckey DH, Jeraldo PR, Lamba A, Patel R, et al. Human gut-derived Prevotella histicola suppresses inflammatory arthritis in humanized mice. Arthritis Rheumatol. (2016) 68:2878–88. 10.1002/art.39785
    1. Lerner A, Aminov R, Matthias T. Dysbiosis may trigger autoimmune diseases via inappropriate post-translational modification of host proteins. Front Microbiol. (2016) 7:84. 10.3389/fmicb.2016.00084
    1. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. . Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. ELife (2013) 2:e01202. 10.7554/eLife.01202
    1. Maeda Y, Kurakawa T, Umemoto E, Motooka D, Ito Y, Gotoh K, et al. . Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rhematol. (2016) 68:2646–61. 10.1002/art.39783
    1. Bernard NJ. Rheumatoid arthritis: prevotella copri associated with new-onset untreated RA. Nat Rev Rheumatol. (2014) 10:2. 10.1038/nrrheum.2013.187
    1. Ley RE. Gut microbiota in 2015: prevotella in the gut: choose carefully. Nat Rev Gastroenterol Hepatol. (2016 13:69–70. 10.1038/nrgastro.2016.4
    1. De Filippis F, Pellegrini N, Laghi L, Gobbetti M, Ercolini D. Unusual sub-genus associations of faecal Prevotella and Bacteroides with specific dietary patterns. Microbiome (2016) 4:2–6. 10.1186/s40168-016-0202-1
    1. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature (2011) 474:327–36. 10.1038/nature10213
    1. Lerner A, Neidhöfer S, Matthias T. The gut microbiome feelings of the brain: a perspective for non-microbiologists. Microorganisms (2017) 12:E66 10.3390/microorganisms5040066
    1. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. . Enterotypes of the human gut microbiome. Nature (2011) 473:174–80. 10.1038/nature09944
    1. Hjorth MF, Roager HM, Larsen TM, Poulsen SK, Licht TR, et al. Pre-treatment microbial Prevotella-to-Bacteroides ratio, determines body fat loss success during a 6-month randomized controlled diet intervention. Int J Obes. (2018) 42:580–3. 10.1038/ijo.2017.220
    1. Gorvitovskaia A, Holmes SP, Huse SM. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome (2016) 4:1–12. 10.1186/s40168-016-0160-7
    1. Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: meta-analysis. BMJ (2008) 337:2–7. 10.1136/bmj.a1344
    1. Willett WC, Sacks F, Trichopoulou A, Drescher G, Ferro-Luzzi A, Helsing E, et al. . Mediterranean diet pyramid: a cultural model for healthy eating. Am J Clin Nutr. (1995) 61:1402S−6S. 10.1093/ajcn/61.6.1402S
    1. Mitsou EK, Kakali A, Antonopoulou S, Mountzouris KC, Yannakoulia M, Panagiotakos DB, et al. . Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. Br J Nutr. (2017) 117:1645–55. 10.1017/S0007114517001593
    1. Bifulco M. Mediterranean diet: the missing link between gut microbiota and inflammatory diseases. Eur J Clin Nutr. (2015) 69:1078. 10.1038/ejcn.2015.81
    1. Clemente JC, Manasson J, Scher JU. The role of the gut microbiome in systemic inflammatory disease. BMJ (2018) 2018:5145 10.1136/bmj.j5145
    1. Skoldstam L, Hagfors L, Johansson G. An experimental study of a Mediterranean diet intervention for patients with rheumatoid arthritis. Ann Rheum Dis. (2003) 62:208–14. 10.1136/ard.62.3.208
    1. McKellar G, Morrison E, McEntegart A, Hampson R, Tierney A, Mackle G, et al. . A pilot study of a Mediterranean-type diet intervention in female patients with rheumatoid arthritis living in areas of social deprivation in Glasgow. Ann Rheum Dis. (2007) 66:1239–43. 10.1136/ard.2006.065151
    1. Tedeschi SK, Costenbader KH. Is there a role for diet in the therapy of rheumatoid arthritis? Curr Rheumatol Rep. (2016) 18:23. 10.1007/s11926-016-0575-y
    1. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut (2016) 65:1812–21. 10.1136/gutjnl-2015-309957
    1. Lerner A, Patricia J, Matthias T. Nutrients, bugs and us: the short-chain fatty acids story in celiac disease. Int J Celiac Dis. (2016) 4:92–4. 10.12691/ijcd-4-3-12
    1. Stoidis CN, Misiakos EP, Patapis P, Fotiadis CI, Spyropoulos BG. Potential benïits of pro- and prebiotics on intestinal mucosal immunity and intestinal barrier in short bowel syndrome. Nutr Res Rev. (2011) 24:21–30. 10.1017/S0954422410000260
    1. Foschi C, Laghi L, Parolin C, Giordani B, Compri M, Cevenini R, et al. . Novel approaches for the taxonomic and metabolic characterization of lactobacilli: integration of 16S rRNA gene sequencing with MALDI-TOF MS and 1H-NMR. PLoS ONE (2017) 12:e0172483. 10.1371/journal.pone.0172483
    1. Alipour B, Homayouni-Rad A, Vaghef-Mehrabany E, Sharif SK, Vaghef-Mehraany L, Asghari-Jafarabadi M, et al. . Effects of Lactobacillus casei supplementation on disease activity and inflammatory cytokines in rheumatoid arthritis patients: a randomized double-blind clinical trial. Int J Rheum Dis. (2014) 17:519–27. 10.1111/1756-185X.12333
    1. Hatakka K, Martio J, Korpela M, Herranen M, Poussa T, Laasanen T, et al. . Effects of probiotic therapy on the activity and activation of mild rheumatoid arthritis-a pilot study. Scand J Rheumatol. (2003) 32:211–5. 10.1080/03009740310003695
    1. Zamani B, Golkar HR, Farshbaf S, Emadi-Baygi M, Tajabadi-Ebrahimi M, Jafari P, et al. . Clinical and metabolic response to probiotic supplementation in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled trial. Int J Rheum Dis. (2016) 19:869–79. 10.1111/1756-185X.12888
    1. Pineda MA, Thompson SF, Summers K, de Leon F, Pope J, Reid G. A randomized, double-blinded, placebo-controlled pilot study of probiotics in active rheumatoid arthritis. Med Sci Monitor (2011) 17:CR347–54. 10.12659/MSM.881808
    1. Amdekar S, Singh V, Singh R, Sharma P, Keshav P, Kumar A. Lactobacillus casei reduces the inflammatory joint damage associated with collagen-induced arthritis (CIA) by reducingg the pro-inflammatory cytokines. J Clin Immunol. (2011) 31:147–54. 10.1007/s10875-010-9457-7
    1. Baharav E, Mor F, Halpern M, Weinberger A. Lactobacillus GG bacteria ameliorate arthritis in Lewis rats. J Nutr. (2004) 134:1964–9. 10.1093/jn/134.8.1964
    1. Bdollahi-Roodsaz S, Joosten LA, Koenders MI, Devesa I, Roelofs MF, Radstake TR, et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest. (2008) 118:205–16. 10.1172/JCI32639
    1. Rudbane SMA, Rahmdel S, Abdollahzadeh SM, Zare M, Bazrafshan A, Mazloomi SM. The efficacy of probiotic supplementation in rheumatoid arthritis: a meta-analysis of randomized, controlled trials. Inflammopharmacology (2018) 26:67–76. 10.1007/s10787-017-0436-y
    1. Graf D, Di Cagno R, Fåk F, Flint HJ, Nyman M, Saarela M, et al. . Contribution of diet to the composition of the human gut microbiota. Microb Ecol Health Dis. (2015) 26:26164. 10.3402/mehd.v26.26164
    1. Guzman JR, Conlin VS, Jobin C. Diet, microbiome, and the intestinal epithelium: an essential triumvirate? Biomed Res Int. (2013) 2013:425146. 10.1155/2013/425146
    1. Lammers KM, Lu R, Brownley J, Lu B, Gerard C, Thomas K, et al. . Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology (2008) 135:194–204.e3. 10.1053/j.gastro.2008.03.023
    1. Lerner A, Shoenfeld Y, Matthias T. Adverse effects of gluten ingestion and advantages of gluten withdrawal in nonceliac autoimmune disease. Nutr Rev. (2017) 75:1046–58. 10.1093/nutrit/nux054
    1. Schipper NG, Olsson S, Hoogstraate JA, deBoer AG, Vårum KM, Artursson P. Chitosans as absorption enhancers for poorly absorbable drugs 2: mechanism of absorption enhancement. Pharm Res. (1997) 14:923–9. 10.1023/A:1012160102740
    1. Lerner A, Matthias T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev. (2015) 14:479–89. 10.1016/j.autrev.2015.01.009
    1. Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. (2011) 141:769–76. 10.3945/jn.110.135657
    1. Lima AA, Brito LF, Ribeiro HB, Martins MC, Lustosa AP, Rocha EM, et al. . Intestinal barrier function and weight gain in malnourished children taking glutamine supplemented enteral formula. J Pediatr Gastroenterol Nutr. (2005) 40:28–35. 10.1097/00005176-200501000-00006
    1. Rapin JR, Wiernsperger N. Possible links between intestinal permeablity and food processing: a potential therapeutic niche for glutamine. Clinics (2010) 65:635–43. 10.1590/S1807-59322010000600012
    1. Rao RK, Basuroy S, Rao VU, Karnaky KJ Jr, Gupta A. Tyrosine phosphor-ylation and dissociation of occludin-ZO-1 and E-cadherin-beta-catenin complexes from the cytoskeleton by oxidative stress. Biochem J. (2002) 368:471–81. 10.1042/BJ20011804
    1. Atkinson KJ, Rao RK. Role of protein tyrosine phosphorylation in acet- aldehyde-induced disruption of epithelial tight junctions. Am J Physiol Gastrointest Liver Physiol. (2001) 280:G1280–8. 10.1152/ajpgi.2001.280.6.G1280
    1. Finamore A, Massimi M, Conti Devirgiliis L, Mengheri E. Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration in Caco-2 cells. J Nutr. (2008) 138:1664–70. 10.1093/jn/138.9.1664
    1. Lerner A, Matthias T, Aminov R. Potential effects of Horizontal Gene exchange in the Human Gut. Front Immunol. (2017) 8:1630. 10.3389/fimmu.2017.01630
    1. Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci (2013) 70:631–59. 10.1007/s00018-012-1070-x
    1. Lerner A, Matthias T. GUT-the Trojan horse in remote organs' autoimmunity. J Clin Cell Immunol. (2016) 7:4172 10.4172/2155-9899.1000401

Source: PubMed

3
Iratkozz fel