Dyspneic and non-dyspneic (silent) hypoxemia in COVID-19: Possible neurological mechanism

Masoud Nouri-Vaskeh, Ali Sharifi, Neda Khalili, Ramin Zand, Akbar Sharifi, Masoud Nouri-Vaskeh, Ali Sharifi, Neda Khalili, Ramin Zand, Akbar Sharifi

Abstract

SARS-CoV-2 mainly invades respiratory epithelial cells by adhesion to angiotensin-converting enzyme 2 (ACE-2) and thus, infected patients may develop mild to severe inflammatory responses and acute lung injury. Afferent impulses that result from the stimulation of pulmonary mechano-chemoreceptors, peripheral and central chemoreceptors by inflammatory cytokines are conducted to the brainstem. Integration and processing of these input signals occur within the central nervous system, especially in the limbic system and sensorimotor cortex, and importantly feedback regulation exists between O2, CO2, and blood pH. Despite the intensity of hypoxemia in COVID-19, the intensity of dyspnea sensation is inappropriate to the degree of hypoxemia in some patients (silent hypoxemia). We hypothesize that SARS-CoV-2 may cause neuronal damage in the corticolimbic network and subsequently alter the perception of dyspnea and the control of respiration. SARS-CoV-2 neuronal infection may change the secretion of numerous endogenous neuropeptides or neurotransmitters that distribute through large areas of the nervous system to produce cellular and perceptual effects. SARS-CoV-2 mainly enter to CNS via direct (neuronal and hematologic route) and indirect route. We theorize that SARS-CoV-2 infection-induced neuronal cell damage and may change the balance of endogenous neuropeptides or neurotransmitters that distribute through large areas of the nervous system to produce cellular and perceptual effects. Thus, SARS-CoV-2-associated neuronal damage may influence the control of respiration by interacting in neuromodulation. This would open up possible lines of study for the progress in the central mechanism of COVID-19-induced hypoxia. Future research is desirable to confirm or disprove such a hypothesis.

Keywords: COVID-19; Central Nervous System; Hypoxemia; Neural Invasion; SARS-CoV-2.

Copyright © 2020 Elsevier B.V. All rights reserved.

Figures

Fig. 1
Fig. 1
A neurobiological model framework shows the route of entry of SARS-CoV-2 via the systemic circulation and olfactory bulb to the brain. Afferent impulses from chemoreceptors and mechanoreceptors are transmitted to the brainstem, limbic system, and cerebral cortex for integration and processing. The central nervous system directs efferent motor commands via the phrenic and thoracic spinal nerves to regulate ventilation and modify dyspnea.
Fig. 2
Fig. 2
Potential mechanisms of central nervous system involvement by SARS-CoV-2.

References

    1. Cao Y., Li L., Feng Z., Wan S., Huang P., Sun X., Wen F., Huang X., Ning G., Wang W. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell discovery. 2020;6:11. doi: 10.1038/s41421-020-0147-1.
    1. Guo Y.R., Cao Q.D., Hong Z.S., Tan Y.Y., Chen S.D., Jin H.J., Tan K.S., Wang D.Y., Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Military Medical Research. 2020;7(1):11. doi: 10.1186/s40779-020-00240-0.
    1. Nouri-Vaskeh M., Alizadeh L. Fecal transmission in COVID-19: A potential shedding route. J Med Virol. 2020;92(10):1731–1732. doi: 10.1002/jmv.25816.
    1. Imanpour H., Rezaee H., Nouri-Vaskeh M. Angiotensin 1-7: A novel strategy in COVID-19 Treatment. Adv pharm bull. 2020;10(4):488–489. doi: 10.34172/apb.2020.068.
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., Tai Y., Bai C., Gao T., Song J., Xia P., Dong J., Zhao J., Wang F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory medicine. 2020 doi: 10.1016/s2213-2600(20)30076-x.
    1. Li M.Y., Li L., Zhang Y., Wang X.S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9(1):45. doi: 10.1186/s40249-020-00662-x.
    1. Sungnak W., Huang N., Bécavin C., Berg M., Queen R., Litvinukova M., Talavera-López C., Maatz H., Reichart D., Sampaziotis F., Worlock K.B., Yoshida M., Barnes J.L. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681–687. doi: 10.1038/s41591-020-0868-6.
    1. Zheng Y.Y., Ma Y.T., Zhang J.Y., Xie X. COVID-19 and the cardiovascular system. Nature reviews Cardiology. 2020 doi: 10.1038/s41569-020-0360-5.
    1. Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS chemical neuroscience. 2020 doi: 10.1021/acschemneuro.0c00122.
    1. Kanninen K.M., Lampinen R., Rantanen L.M., Odendaal L., Jalava P., Chew S., White A.R. Olfactory cell cultures to investigate health effects of air pollution exposure: implications for neurodegeneration. Neurochemistry international. 2020;104729 doi: 10.1016/j.neuint.2020.104729.
    1. Netland J., Meyerholz D.K., Moore S., Cassell M., Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. Journal of virology. 2008;82(15):7264–7275.
    1. Xydakis M.S., Dehgani-Mobaraki P., Holbrook E.H., Geisthoff U.W., Bauer C., Hautefort C., Herman P., Manley G.T., Lyon D.M., Hopkins C. Smell and taste dysfunction in patients with COVID-19. The Lancet Infectious Diseases. 2020
    1. Vaira L.A., Salzano G., Deiana G., De Riu G. Anosmia and ageusia: common findings in COVID-19 patients. The Laryngoscope. 2020
    1. Lechien J.R., Chiesa-Estomba C.M., De Siati D.R., Horoi M., Le Bon S.D., Rodriguez A., Dequanter D., Blecic S., El Afia F., Distinguin L. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. European Archives of Oto-Rhino-Laryngology. 2020;1
    1. Gane S., Kelly C., Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology. 2020
    1. Gómez-Iglesias P., Porta-Etessam J., Montalvo T., Valls-Carbó A., Gajate V., Matías-Guiu J.A., Parejo-Carbonell B., González-García N., Ezpeleta D., Láinez J.M., Matías-Guiu J.A. An Online Observational Study of Patients With Olfactory and Gustory Alterations Secondary to SARS-CoV-2 Infection. Frontiers in public health. 2020;8 doi: 10.3389/fpubh.2020.00243. 243-243.
    1. Paniz-Mondolfi A., Bryce C., Grimes Z., Gordon R.E., Reidy J., Lednicky J., Sordillo E.M., Fowkes M. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) J Med Virol. 2020;92(7):699–702. doi: 10.1002/jmv.25915.
    1. Bulfamante G., Chiumello D., Canevini M.P., Priori A., Mazzanti M., Centanni S., Felisati G. First ultrastructural autoptic findings of SARS -Cov-2 in olfactory pathways and brainstem. Minerva Anestesiol. 2020;86(6):678–679. doi: 10.23736/s0375-9393.20.14772-2.
    1. Matías-Guiu J., Gomez-Pinedo U., Montero-Escribano P., Gomez-Iglesias P., Porta-Etessam J., Matias-Guiu J.A. Should we expect neurological symptoms in the SARS-CoV-2 epidemic? Neurologia. 2020;35(3):170–175. doi: 10.1016/j.nrl.2020.03.001.
    1. Eliezer M., Hautefort C., Hamel A.L., Verillaud B., Herman P., Houdart E., Eloit C. Sudden and Complete Olfactory Loss Function as a Possible Symptom of COVID-19. JAMA Otolaryngol Head Neck Surg. 2020 doi: 10.1001/jamaoto.2020.0832.
    1. Lu W., Zhang S., Chen B., Chen J., Xian J., Lin Y., Shan H., Su Z.Z. A Clinical Study of Noninvasive Assessment of Lung Lesions in Patients with Coronavirus Disease-19 (COVID-19) by Bedside Ultrasound (Nicht-invasive Beurteilung von pulmonalen Läsionen bei Patienten mit Coronavirus-Erkrankung (COVID-19) durch Ultraschall direkt am Krankenbett) Ultraschall in Med (EFirst). 2020 doi: 10.1055/a-1154-8795.
    1. Li Y.C., Bai W.Z., Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. Journal of medical virology. 2020 doi: 10.1002/jmv.25728.
    1. Gomez-Pinedo U., Matias-Guiu J., Sanclemente-Alaman I., Moreno-Jimenez L., Montero-Escribano P., Matias-Guiu J.A. Is the brain a reservoir organ for SARS-CoV2? Journal of medical virology. 2020 doi: 10.1002/jmv.26046. doi:10.1002/jmv.26046.
    1. Chen R., Yu J., Wang K., Howard D., French L., Chen Z., Wen C., Xu Z. The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and mouse brain. BioRxiv. 2020
    1. Yao X.H., Li T.Y., He Z.C., Ping Y.F., Liu H.W., Yu SC Mou HM, Wang L.H., Zhang H.R., Fu W.J., Luo T., Liu F., Chen C., Xiao H.L., Guo H.T., Lin S., Xiang D.F., Shi Y., Li Q.R., Huang X., Cui Y., Li X.Z., Tang W., Pan P.F., Huang X.Q., Ding Y.Q., Bian X.W. [A pathological report of three COVID-19 cases by minimally invasive autopsies] Zhonghua Bing Li X.Z.ue Za Zhi. 2020;49(0):E009. doi: 10.3760/cma.j.cn112151-20200312-00193.
    1. Fox S.E., Akmatbekov A., Harbert J.L., Li G., Brown J.Q., Vander Heide R.S. Pulmonary and Cardiac Pathology in Covid-19: The First Autopsy Series from New Orleans. medRxiv. 2020;2020 doi: 10.1101/2020.04.06.20050575. 2004.2006.20050575.
    1. Gattinoni L., Coppola S., Cressoni M., Busana M., Chiumello D. Covid-19 does not lead to a “typical” acute respiratory distress syndrome. American journal of respiratory and critical care medicine (ja) 2020
    1. Möhlenkamp S., Thiele H. Ventilation of COVID-19 patients in intensive care units (Beatmung von COVID-19-Patienten auf Intensivstationen) Herz:1-3. 2020 doi: 10.1007/s00059-020-04923-1.
    1. Henig N.R., Pierson D.J. Mechanisms of hypoxemia. Respir Care Clin N Am. 2000;6(4):501–521. doi: 10.1016/s1078-5337(05)70087-3.
    1. Sarkar M., Niranjan N., Banyal P.K. Mechanisms of hypoxemia. Lung India : official organ of Indian Chest Society. 2017;34(1):47–60. doi: 10.4103/0970-2113.197116.
    1. Burki N.K., Lee L.Y. Mechanisms of dyspnea. Chest. 2010;138(5):1196–1201. doi: 10.1378/chest.10-0534.
    1. Manning H.L., Mahler D.A. Pathophysiology of dyspnea. Monaldi archives for chest disease = Archivio Monaldi per le malattie del torace. 2001;56(4):325–330.
    1. Stoeckel M.C., Esser R.W., Gamer M., Büchel C., von Leupoldt A. Brain mechanisms of short-term habituation and sensitization toward dyspnea. Front Psychol. 2015;6 doi: 10.3389/fpsyg.2015.00748. 748-748.
    1. Gigliotti F. Mechanisms of dyspnea in healthy subjects. Multidisciplinary respiratory medicine. 2010;5(3):195–201. doi: 10.1186/2049-6958-5-3-195.
    1. Burki T. Outbreak of coronavirus disease 2019. The Lancet Infectious diseases. 2020;20(3):292–293. doi: 10.1016/s1473-3099(20)30076-1.
    1. Prys-Picard Co, Kellett F., Niven Rm. Disproportionate breathlessness associated with deep sighing breathing in a patient presenting with difficult-to-treat asthma. Chest. 2006;130(6):1723–1725. doi: 10.1378/chest.130.6.1723.
    1. Wright G.W., Branscomb B.V. The origin of the sensations of dyspnea. Trans Am Clin Climatol Assoc. 1954;66:116–125.
    1. von Leupoldt A., Dahme B. Cortical substrates for the perception of dyspnea. Chest. 2005;128(1):345–354. doi: 10.1378/chest.128.1.345.
    1. Davenport P.W., Vovk A. Cortical and subcortical central neural pathways in respiratory sensations. Respiratory physiology & neurobiology. 2009;167(1):72–86. doi: 10.1016/j.resp.2008.10.001.
    1. Gattinoni L., Coppola S., Cressoni M., Busana M., Rossi S., Chiumello D. Covid-19 Does Not Lead to a "Typical" Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2020 doi: 10.1164/rccm.202003-0817LE.
    1. Peiffer C., Costes N., Herve P., Garcia-Larrea L. Relief of dyspnea involves a characteristic brain activation and a specific quality of sensation. Am J Respir Crit Care Med. 2008;177(4):440–449. doi: 10.1164/rccm.200612-1774OC.
    1. von Leupoldt A., Sommer T., Kegat S., Baumann H.J., Klose H., Dahme B., Buchel C. The unpleasantness of perceived dyspnea is processed in the anterior insula and amygdala. Am J Respir Crit Care Med. 2008;177(9):1026–1032. doi: 10.1164/rccm.200712-1821OC.
    1. Lipton P., Whittingham T.S. The effect of hypoxia on evoked potentials in the in vitro hippocampus. The Journal of physiology. 1979;287:427–438. doi: 10.1113/jphysiol.1979.sp012668.
    1. Mukandala G., Tynan R., Lanigan S., O’Connor J.J. The Effects of Hypoxia and Inflammation on Synaptic Signaling in the CNS. Brain Sci. 2016;6(1):6. doi: 10.3390/brainsci6010006.
    1. Corcoran A., O’Connor J.J. Hypoxia-inducible factor signalling mechanisms in the central nervous system. Acta physiologica (Oxford, England) 2013;208(4):298–310. doi: 10.1111/apha.12117.
    1. Forsythe J.A., Jiang B.H., Iyer N.V., Agani F., Leung S.W., Koos R.D., Semenza G.L. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and cellular biology. 1996;16(9):4604–4613. doi: 10.1128/mcb.16.9.4604.
    1. Feoktistov I., Ryzhov S., Zhong H., Goldstein A.E., Matafonov A., Zeng D., Biaggioni I. Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A2B angiogenic phenotype. Hypertension (Dallas, Tex : 1979) 2004;44(5):649–654. doi: 10.1161/01.HYP.0000144800.21037.a5.
    1. Devlin C., Greco S., Martelli F., Ivan M. miR-210: More than a silent player in hypoxia. IUBMB life. 2011;63(2):94–100. doi: 10.1002/iub.427.
    1. Ivan M., Harris A.L., Martelli F., Kulshreshtha R. Hypoxia response and microRNAs: no longer two separate worlds. Journal of cellular and molecular medicine. 2008;12(5a):1426–1431. doi: 10.1111/j.1582-4934.2008.00398.x.
    1. Zubair A.S., McAlpine L.S., Gardin T., Farhadian S., Kuruvilla D.E., Spudich S. Neuropathogenesis and Neurologic Manifestations of the Coronaviruses in the Age of Coronavirus Disease 2019: A Review. JAMA Neurology. 2020 doi: 10.1001/jamaneurol.2020.2065.
    1. Solomon I.H., Normandin E., Bhattacharyya S., Mukerji S.S., Keller K., Ali A.S., Adams G., Hornick J.L., Padera R.F., Sabeti P. Neuropathological Features of Covid-19. New England Journal of Medicine. 2020 doi: 10.1056/NEJMc2019373.
    1. Dixon L., Varley J., Gontsarova A., Mallon D., Tona F., Muir D., Luqmani A., Jenkins Ih, Nicholas R., Jones B., Everitt A. COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anemia. Neurology - Neuroimmunology Neuroinflammation. 2020;7(5):e789. doi: 10.1212/nxi.0000000000000789.
    1. Dalakas M.C. Guillain-Barré syndrome: The first documented COVID-19–triggered autoimmune neurologic disease. More to come with myositis in the offing. 2020;7(5):e781. doi: 10.1212/nxi.0000000000000781.
    1. Virani A., Rabold E., Hanson T., Haag A., Elrufay R., Cheema T., Balaan M., Bhanot N. Guillain-Barré Syndrome associated with SARS-CoV-2 infection. IDCases. 2020;20 doi: 10.1016/j.idcr.2020.e00771. e00771-e00771.
    1. Alberti P., Beretta S., Piatti M., Karantzoulis A., Piatti M.L., Santoro P., Viganò M., Giovannelli G., Pirro F., Montisano D.A., Appollonio I., Ferrarese C. Guillain-Barré syndrome related to COVID-19 infection. Neurology - Neuroimmunology Neuroinflammation. 2020;7(4):e741. doi: 10.1212/nxi.0000000000000741.
    1. Padroni M., Mastrangelo V., Asioli G.M., Pavolucci L., Abu-Rumeileh S., Piscaglia M.G., Querzani P., Callegarini C., Foschi M. Guillain-Barré syndrome following COVID-19: new infection, old complication? Journal of neurology. 2020;267(7):1877–1879. doi: 10.1007/s00415-020-09849-6.
    1. Huang Y.H., Jiang D., Huang J.T. SARS-CoV-2 Detected in Cerebrospinal Fluid by PCR in a Case of COVID-19 Encephalitis. Brain Behav Immun. 2020;87 doi: 10.1016/j.bbi.2020.05.012. 149-149.
    1. Moriguchi T., Harii N., Goto J., Harada D., Sugawara H., Takamino J., Ueno M., Sakata H., Kondo K., Myose N., Nakao A., Takeda M., Haro H., Inoue O., Suzuki-Inoue K., Kubokawa K., Ogihara S., Sasaki T., Kinouchi H., Kojin H., Ito M., Onishi H., Shimizu T., Sasaki Y., Enomoto N., Ishihara H., Furuya S., Yamamoto T., Shimada S. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. International Journal of Infectious Diseases. 2020;94:55–58. doi: 10.1016/j.ijid.2020.03.062.
    1. Zanin L., Saraceno G., Panciani P.P., Renisi G., Signorini L., Migliorati K., Fontanella M.M. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir (Wien) 2020;162(7):1491–1494. doi: 10.1007/s00701-020-04374-x.
    1. Zhao K., Huang J., Dai D., Feng Y., Liu L., Nie S. Acute myelitis after SARS-CoV-2 infection: a case report. MedRxiv. 2020

Source: PubMed

3
Iratkozz fel