Doppler Flow Response Following Running Exercise Differs Between Healthy and Tendinopathic Achilles Tendons

Lucie Risch, Frank Mayer, Michael Cassel, Lucie Risch, Frank Mayer, Michael Cassel

Abstract

Background: The relationship between exercise-induced intratendinous blood flow (IBF) and tendon pathology or training exposure is unclear.

Objective: This study investigates the acute effect of running exercise on sonographic detectable IBF in healthy and tendinopathic Achilles tendons (ATs) of runners and recreational participants.

Methods: 48 participants (43 ± 13 years, 176 ± 9 cm, 75 ± 11 kg) performed a standardized submaximal 30-min constant load treadmill run with Doppler ultrasound "Advanced dynamic flow" examinations before (Upre) and 5, 30, 60, and 120 min (U5-U120) afterward. Included were runners (>30 km/week) and recreational participants (<10 km/week) with healthy (Hrun, n = 10; Hrec, n = 15) or tendinopathic (Trun, n = 13; Trec, n = 10) ATs. IBF was assessed by counting number [n] of intratendinous vessels. IBF data are presented descriptively (%, median [minimum to maximum range] for baseline-IBF and IBF-difference post-exercise). Statistical differences for group and time point IBF and IBF changes were analyzed with Friedman and Kruskal-Wallis ANOVA (α = 0.05).

Results: At baseline, IBF was detected in 40% (3 [1-6]) of Hrun, in 53% (4 [1-5]) of Hrec, in 85% (3 [1-25]) of Trun, and 70% (10 [2-30]) of Trec. At U5 IBF responded to exercise in 30% (3 [-1-9]) of Hrun, in 53% (4 [-2-6]) of Hrec, in 70% (4 [-10-10]) of Trun, and in 80% (5 [1-10]) of Trec. While IBF in 80% of healthy responding ATs returned to baseline at U30, IBF remained elevated until U120 in 60% of tendinopathic ATs. Within groups, IBF changes from Upre-U120 were significant for Hrec (p < 0.01), Trun (p = 0.05), and Trec (p < 0.01). Between groups, IBF changes in consecutive examinations were not significantly different (p > 0.05) but IBF-level was significantly higher at all measurement time points in tendinopathic versus healthy ATs (p < 0.05).

Conclusion: Irrespective of training status and tendon pathology, running leads to an immediate increase of IBF in responding tendons. This increase occurs shortly in healthy and prolonged in tendinopathic ATs. Training exposure does not alter IBF occurrence, but IBF level is elevated in tendon pathology. While an immediate exercise-induced IBF increase is a physiological response, prolonged IBF is considered a pathological finding associated with Achilles tendinopathy.

Keywords: Advanced Dynamic Flow; Doppler ultrasound; athlete; neovascularization; sonography; tendinopathy.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Risch, Mayer and Cassel.

Figures

FIGURE 1
FIGURE 1
Study design. ME, medical examination; VISA-A, Victorian Institute of Sports Assessment-Achilles Questionnaire; Upre-U120, Ultrasound examinations at baseline and 5, 30, 60, and 120 min after exercise; IAT, individual anaerobic threshold.
FIGURE 2
FIGURE 2
Study flow chart.
FIGURE 3
FIGURE 3
IBF images (a) Healthy, asymptomatic AT, and (b) Tendinopathic AT at U5.
FIGURE 4
FIGURE 4
Boxplots (median and interquartile range) of IBF amount in each group assessed during five measurement time points (Upre-U120).
FIGURE 5
FIGURE 5
Individual courses of IBF changes relative to Upre in healthy and tendinopathic ATs.

References

    1. Alfredson H., Bjur D., Thorsen K., Lorentzon R., Sandström P. (2002). High intratendinous lactate levels in painful chronic Achilles tendinosis. An investigation using microdialysis technique. J. Orthop. Res. 20 934–938. 10.1016/S0736-0266(02)00021-9
    1. Alfredson H., Ohberg L. (2006). Increased intratendinous vascularity in the early period after sclerosing injection treatment in Achilles tendinosis?: a healing response? Knee Surg. Sports Traumatol. Arthrosc. 14 399–401. 10.1007/s00167-006-0720-7
    1. Alfredson H., Ohberg L., Forsgren S. (2003). Is vasculo-neural ingrowth the cause of pain in chronic Achilles tendinosis? An investigation using ultrasonography and colour Doppler, immunohistochemistry, and diagnostic injections. Knee Surg. Sports Traumatol. Arthrosc. 11 334–338. 10.1007/s00167-003-0391-6
    1. Andersson G., Danielson P., Alfredson H., Forsgren S. (2007). Nerve-related characteristics of ventral paratendinous tissue in chronic Achilles tendinosis. Knee Surg. Sports Traumatol. Arthrosc. 15 1272–1279. 10.1007/s00167-007-0364-2
    1. Boesen A. P., Boesen M. I., Koenig M. J., Bliddal H., Torp-Pedersen S., Langberg H. (2011). Evidence of accumulated stress in Achilles and anterior knee tendons in elite badminton players. Knee Surg. Sports Traumatol. Arthrosc. 19 30–37. 10.1007/s00167-010-1208-z
    1. Boesen A. P., Boesen M. I., Torp-Pedersen S., Christensen R., Boesen L., Hölmich P., et al. (2012). Associations between abnormal ultrasound color Doppler measures and tendon pain symptoms in badminton players during a season: a prospective cohort study. Am. J. Sports Med. 40 548–555. 10.1177/0363546511435478
    1. Boesen M. I., Boesen A., Koenig M. J., Bliddal H., Torp-Pedersen S. (2006a). Ultrasonographic investigation of the Achilles tendon in elite badminton players using color Doppler. Am. J. Sports Med. 34 2013–2021. 10.1177/0363546506290188
    1. Boesen M. I., Koenig M. J., Torp-Pedersen S., Bliddal H., Langberg H. (2006b). Tendinopathy and Doppler activity: the vascular response of the Achilles tendon to exercise. Scand. J. Med. Sci. Sports. 16 463–469. 10.1111/j.1600-0838.2005.00512.x
    1. Borg G. A. (1982). Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14 377–381.
    1. Boushel R., Langberg H., Green S., Skovgaard D., Jens B., Kjòr M. (2000). Blood flow and oxygenation in peritendinous tissue and calf muscle during dynamic exercise in humans. J. Physiol. 524(Pt 1) 305–313. 10.1111/j.1469-7793.2000.t01-2-00305.x
    1. Cassel M., Risch L., Intziegianni K., Mueller J., Stoll J., Brecht P., et al. (2018). Incidence of achilles and patellar tendinopathy in adolescent elite athletes. Int. J. Sports Med. 39 726–732. 10.1055/a-0633-9098
    1. Clermont C. A., Phinyomark A., Osis S. T., Ferber R. (2019). Classification of higher- and lower-mileage runners based on running kinematics. J. Sport. Health Sci. 8 249–257. 10.1016/j.jshs.2017.08.003
    1. Cook J. L., Kiss Z. S., Ptasznik R., Malliaras P. (2005). Is vascularity more evident after exercise? Implications for tendon imaging. AJR Am. J. Roentgenol. 185 1138–1140. 10.2214/AJR.04.1205
    1. Couppe C., Kongsgaard M., Aagaard P., Hansen P., Bojsen-Moller J., Kjaer M., et al. (2008). Habitual loading results in tendon hypertrophy and increased stiffness of the human patellar tendon. J. Appl. Physiol. 105 805–810. 10.1152/japplphysiol.90361.2008
    1. Dickhuth H. H., Yin L., Niess A., Röcker K., Mayer F., Heitkamp H. C., et al. (1999). Ventilatory, lactate-derived and catecholamine thresholds during incremental treadmill running: relationship and reproducibility. Int. J. Sports Med. 20 122–127. 10.1055/s-2007-971105
    1. Fahlström M., Alfredson H. (2010). Ultrasound and Doppler findings in the Achilles tendon among middle-aged recreational floor-ball players in direct relation to a match. Br. J. Sports Med. 44 140–143. 10.1136/bjsm.2008.047316
    1. Fredberg U., Bolvig L., Andersen N. T., Stengaard-Pedersen K. (2008). Ultrasonography in evaluation of Achilles and patella tendon thickness. Ultraschall Med. 29 60–65. 10.1055/s-2007-963027
    1. Genovese E., Ronga M., Recaldini C., Fontana F., Callegari L., Maffulli N., et al. (2011). Analysis of achilles tendon vascularity with second-generation contrast-enhanced ultrasound. J. Clin. Ultrasound. 39 141–145. 10.1002/jcu.20789
    1. Heling K. S., Chaoui R., Bollmann R. (2004). Advanced dynamic flow – a new method of vascular imaging in prenatal medicine. A pilot study of its applicability. Ultraschall Med. 25 280–284. 10.1055/s-2004-813383
    1. Hirschmüller A., Frey V., Deibert P., Konstantinidis L., Mayer F., Südkamp N., et al. (2010). [Achilles tendon power Doppler sonography in 953 long distance runners - a cross sectional study]. Ultraschall Med. 31 387–393. 10.1055/s-0029-1245189
    1. Järvinen T. A. H. (2020). Neovascularisation in tendinopathy: from eradication to stabilisation? Br. J. Sports Med. 54 1–2. 10.1136/bjsports-2019-100608
    1. De Jonge S., Warnaars J. L. F., De Vos R. J., Weir A., van Schie H. T., Bierma-Zeinstra S. M., et al. (2014). Relationship between neovascularization and clinical severity in Achilles tendinopathy in 556 paired measurements. Scand. J. Med. Sci. Sports. 24 773–778. 10.1111/sms.12072
    1. Kjaer M., Langberg H., Miller B. F., Boushel R., Crameri R., Koskinen S., et al. (2005). Metabolic activity and collagen turnover in human tendon in response to physical activity. J. Musculoskelet. Neuronal Interact. 5 41–52.
    1. Kjaer M., Magnusson P., Krogsgaard M., BoysenMøller J., Olesen J., Heinemeier K., et al. (2006). Extracellular matrix adaptation of tendon and skeletal muscle to exercise. J. Anat. 208 445–450. 10.1111/j.1469-7580.2006.00549.x
    1. Knobloch K., Yoon U., Vogt P. M. (2008). Acute and overuse injuries correlated to hours of training in master running athletes. Foot Ankle Int. 29 671–676. 10.3113/FAI.2008.0671
    1. Koenig M. J., Torp-Pedersen S., Boesen M. I., Holm C. C., Bliddal H. (2010). Doppler ultrasonography of the anterior knee tendons in elite badminton players?: colour fraction before and after match. Br. J. Sports Med. 2 134–139. 10.1136/bjsm.2007.039743
    1. Malliaras P., Chan O., Simran G., Martinez de Albornoz P., Morrissey D., Maffulli N. (2012) Doppler ultrasound signal in Achilles tendinopathy reduces immediately after activity. Int. J. Sports Med. 33 480–484. 10.1055/s-0032-1304636
    1. Malliaras P., Richards P. J., Garau G., Maffulli N. (2008). Achilles tendon Doppler flow may be associated with mechanical loading among active athletes. Am. J. Sports Med. 36 2210–2215. 10.1177/0363546508319052
    1. De Marchi A., Pozza S., Cenna E., Cavallo F., Gays G., Simbula L., et al. (2018). In Achilles tendinopathy, the neovascularization, detected by contrast-enhanced ultrasound (CEUS), is abundant but not related to symptoms. Knee Surg. Sports Traumatol. Arthroshrosc. 26 2051–2058. 10.1007/s00167-017-4710-8
    1. Moser O., Tschakert G., Mueller A., Groeschl W., Pieber T. R., Obermayer-Pietsch B., et al. (2015). Effects of high-intensity interval exercise versus moderate continuous exercise on glucose homeostasis and hormone response in patients with type 1 diabetes mellitus using novel ultra-long-acting insulin. PLoS One 10:e0136489. 10.1371/journal.pone.0136489
    1. Mugele H., Plummer A., Baritello O., Towe M., Brecht P., Mayer F. (2018). Accuracy of training recommendations based on a treadmill multistage incremental exercise test. PLoS One 13:e0204696. 10.1371/journal.pone.0204696
    1. Ohberg L., Lorentzon R., Alfredson H. (2001). Neovascularisation in Achilles tendons with painful tendinosis but not in normal tendons: an ultrasonographic investigation. Knee Surg. Sports Traumatol. Arthrosc. 9 233–238. 10.1007/s001670000189
    1. Pingel J., Harrison A., Simonsen L., Suetta C., Bülow J., Langberg H. (2013a). The microvascular volume of the Achilles tendon is increased in patients with tendinopathy at rest and after a 1-hour treadmill run. Am. J. Sports. Med. 41 2400–2408. 10.1177/0363546513498988
    1. Pingel J., Harrison A., Suetta C., Simonsen L., Langberg H., Bülow J. (2013b). The acute effects of exercise on the microvascular volume of Achilles tendons in healthy young subjects. Clin. Physiol. Funct. Imaging. 33 252–257. 10.1111/cpf.12021
    1. Rees J. D., Stride M., Scott A. (2014). Tendons – time to revisit in fl ammation. Br. J. Sports Med. 48 1553–1557. 10.1136/bjsports-2012-091957
    1. Risch L., Cassel M., Mayer F. (2018a). Acute effect of running exercise on physiological Achilles tendon blood flow. Scand. J. Med. Sci. Sports 28 138–143. 10.1111/sms.12874
    1. Risch L., Cassel M., Messerschmidt J., Intziegianni K., Fröhlich K., Kopinski S., et al. (2016). Is sonographic assessment of intratendinous blood flow in achilles tendinopathy patients reliable? Ultrasound Int. Open 2 E13–E18. 10.1055/s-0035-1569286
    1. Risch L., Wochatz M., Messerschmidt J., Engel T., Mayer F., Cassel M. (2018b). Reliability of evaluating Achilles tendon vascularization assessed with doppler ultrasound advanced dynamic flow. J. Ultrasound Med. 37 737–744. 10.1002/jum.14414
    1. Robinson J. M., Cook J. L., Purdam C., Visentini P. J., Ross J., Maffulli N., et al. (2001). The VISA-A questionnaire: a valid and reliable index of the clinical severity of Achilles tendinopathy. Br. J. Sports. Med. 35 335–341. 10.1136/bjsm.35.5.335
    1. Ryan M., Cped C. (2015). Should we care about tendon structure?? the disconnect between structure and symptoms in tendinopathy. J. Orthop. Sports Phys. Ther. 45 823–825. 10.2519/jospt.2015.0112
    1. Sanz-López F., Berzosa Sánchez C., Hita-Contreras F., Cruz-Diaz D., Martínez-Amat A. (2016). Ultrasound changes in Achilles tendon and gastrocnemius medialis muscle on squat eccentric overload and running performance. J. strength Cond. Res. 30 2010–2018. 10.1519/JSC.0000000000001298
    1. Sengkerij P. M., de Vos R.-J., Weir A., van Weelde B. J. G., Tol J. L. (2009). Interobserver reliability of neovascularization score using power Doppler ultrasonography in midportion Achilles tendinopathy. Am. J. Sports Med. 37 1627–1631. 10.1177/0363546509332255
    1. Tardioli A., Malliaras P., Maffulli N. (2012). Immediate and short-term effects of exercise on tendon structure: biochemical, biomechanical and imaging responses. Br. Med. Bull. 103 169–202. 10.1093/bmb/ldr052
    1. Tol J. L., Spiezia F., Maffulli N. (2012). Neovascularization in Achilles tendinopathy: have we been chasing a red herring? Knee Surg. Sports Traumatol. Arthrosc. 20 1891–1894. 10.1007/s00167-012-2172-6
    1. de Vos R.-J., Weir A., Cobben L. P. J., Tol J. L. (2007). The value of power Doppler ultrasonography in Achilles tendinopathy: a prospective study. Am. J. Sports Med. 35 1696–1701. 10.1177/0363546507303116
    1. Wezenbeek E., De Clercq D., Mahieu N., Willems T., Witvrouw E. (2018). Activity-induced increase in Achilles Tendon blood flow is age and sex dependent. Am. J. Sports Med. 46 2678–2686. 10.1177/0363546518786259

Source: PubMed

3
Iratkozz fel