Woody forages effect the intestinal bacteria diversity of golden pompano Trachinotus ovatus

Biao Chen, Liu-Ling Gao, Qing Pan, Biao Chen, Liu-Ling Gao, Qing Pan

Abstract

To understand the effect of woody forages on golden pompano (Trachinotus ovatus) intestinal bacteria diversity and exploit new aquafeed ingredients, the diets of Moringa oleifera Lam (MOL), Broussonetia papyrifera (BP), Neolamarckia cadamba (NC) and Folium mori (FM) formulated with 70% of reference (Ref) diet and 30% of the four woody plants leaves were fed to golden pompano with initial body weight of 34.4 ± 0.5 g for 56 days, respectively. Bacteria diversity of golden pompano intestine and tank water (W) samples were analyzed using high-throughput illumina sequencing and the result indicated that the dominate phyla of golden pompano intestine were Proteobacteria, Bacteroidetes, Firmicutes and Fusobacteria. Proteobacteria in BP was significantly higher than those in NC (P < 0.05). Firmicutes in NC were significantly higher than those in BP and FM (P < 0.05). At genera level, Lactobacillus in NC was significantly higher than those in BP, MOL and FM groups (P < 0.05). The PCoA and heat map analyses showed that the intestinal bacteria community of golden pompano fed with woody forages and Ref diet presented higher similarity and the bacteria community of golden pompano intestine were clearly distinguished from those of W. Phylogenetic investigation of communities by reconstruction of unobserved states showed that the intestinal bacteria dominant metabolism pathways of golden pompano fed with woody forages and Ref diet were biosynthesis of amino acids and carbon metabolism. Overall, the present study first successfully characterized the intestinal bacteria diversity of golden pompano.

Keywords: Golden pompano; Illumina sequence; Intestinal bacteria; Woody forages.

Figures

Fig. 1
Fig. 1
Rarefaction analyses of all samples. Rarefaction curves represented the number of operational taxonomic unit (OTU) detected in W (W1, W2, W3), Ref (Ref1, Ref2, Ref3), BP (BP1, BP2, BP3), NC (NC1, NC2, NC3), MOL (MOL1, MOL2, MOL3) and FM (FM1, FM2, FM3). Sequences were clustered at 97% sequence similarity
Fig. 2
Fig. 2
The intestinal bacteria communities at phyla level. The color-coded bar plot showed the percentages of intestinal bacteria communities in W, Ref, BP, NC, MOL and FM groups at phyla level. “Others” meant the relative abundance were less than 1%
Fig. 3
Fig. 3
The intestinal bacteria communities at genera level. The color-coded bar plot showed the percentages of intestinal bacteria communities in W, Ref, BP, NC, MOL and FM groups at genera level. Others meant the relative abundance were less than 1%
Fig. 4
Fig. 4
PCoA analyzed the bacteria community. The colored circles represented the bacteria from W, Ref, BP, NC, MOL and FM. PCoA analyzed by with binary Jaccard distances
Fig. 5
Fig. 5
The heatmap of all samples. The different color intensities represented the relative bacteria abundance in W, Ref, BP, NC, MOL and FM groups. Figure was constructed using binary Jaccard distances. The distance of samples gradually increased with the color from blue to red

References

    1. Adeoye AA, Jaramillo-Torres A, Fox SW, Merrifield DL, Davies SJ. Supplementation of formulated diets for tilapia (Oreochromis niloticus) with selected exogenous enzymes: overall performance and effects on intestinal histology and microbiota. Anim Feed Sci Tech. 2016;215:133–143. doi: 10.1016/j.anifeedsci.2016.03.002.
    1. Afuang W, Siddhuraju P, Becker K. Comparative nutritional evaluation of raw, methanol extracted residues and methanol extracts of moringa (Moringa oleifera Lam.) leaves on growth performance and feed utilization in Nile tilapia (Oreochromis niloticus L.) Aquacult Res. 2003;34(13):1147–1159. doi: 10.1046/j.1365-2109.2003.00920.x.
    1. AOAC . In: Official methods of analysis of the AOAC International. 16. Cunniff PA, editor. Arlingaton: AOAC International; 1995.
    1. Baldo L, Riera JL, Tooming-klunderud A, Albà MM, Salzburger W. Gut microbiota dynamics during dietary shift in eastern African cichlid fishes. PLoS ONE. 2015;10(5):e0127462. doi: 10.1371/journal.pone.0127462.
    1. Becker AA, Hesta M, Hollants J, Janssens GP, Huys G. Phylogenetic analysis of faecal microbiota from captive cheetahs reveals underrepresentation of Bacteroidetes and Bifidobacteriaceae. BMC Microbiol. 2014;14:43. doi: 10.1186/1471-2180-14-43.
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttely GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, Mcdonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–336. doi: 10.1038/nmeth.f.303.
    1. Corsetti A, Gobbetti M, Rossi J, Damiani P. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1. Appl Microbiol Biotechnol. 1998;50:253. doi: 10.1007/s002530051285.
    1. De Oliveira MNV, Jewell KA, Freitas FS, Benjamin LA, Tótola MR, Borges AC, Moraes CA, Suen G. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Vet Microbiol. 2013;164(3–4):307–314. doi: 10.1016/j.vetmic.2013.02.013.
    1. Doi K, Kojima T, Fujimoto Y. Mulberry leaf extract inhibits the oxidative modification of rabbit and human low density lipoprotein. Biol Pharm Bull. 2000;23(9):1066–1071. doi: 10.1248/bpb.23.1066.
    1. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–2461. doi: 10.1093/bioinformatics/btq461.
    1. Finegold SM, Vaisanen M-L, Molitoris DR, Tomzynski TJ, Song Y, Liu C, Collins MD, Lawson PA. Cetobacterium somerae sp. nov. from human feces and emended description of the genus Cetobacterium. Syst Appl Microbiol. 2003;26(2):177–181. doi: 10.1078/072320203322346010.
    1. Hamdan AM, El-Sayed AFM, Mahmoud MM. Effects of a novel marine probiotic, Lactobacillus plantarum AH 78, on growth performance and immune response of Nile tilapia (Oreochromis niloticus) J Appl Microbiol. 2016;120(4):1061–1073. doi: 10.1111/jam.13081.
    1. Hamilton MJ, Weingarden AR, Unno T, Khoruts A, Sadowsky MJ. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes. 2013;4(2):125–135. doi: 10.4161/gmic.23571.
    1. Hao YT, Wu SG, Jakovlić I, Zou H, Li WX, Wang GT. Impacts of diet on hindgut microbiota and short-chain fatty acids in grass carp (Ctenopharyngodon idellus) Aquacult Res. 2017;48(11):5595–5605. doi: 10.1111/are.13381.
    1. Hassaan MS, Soltan MA, Jarmołowicz S, Abdo HS. Combined effects of dietary malic acid and Bacillus subtilis on growth, gut microbiota and blood parameters of Nile tilapia (Oreochromis niloticus) Aquacult Nutr. 2017;24(1):83–93. doi: 10.1111/anu.12536.
    1. Huyben D, Nyman A, Vidaković A, Passoth V, Moccia R, Kiessling A, Dicksved J, Lundh T. Effects of dietary inclusion of the yeasts Saccharomyces cerevisiae and Wickerhamomyces anomalus on gut microbiota of rainbow trout. Aquaculture. 2017;473:528–537. doi: 10.1016/j.aquaculture.2017.03.024.
    1. Johnson CN, Barnes S, Ogle J, Grimes DJ, Chang YJ, Peacock AD, Kline L. Microbial community analysis of water foregut and hindgut during growth of pacific white shrimp, Litopenaeus vannamei, in closed-system aquaculture. J Word Aquacult Soc. 2008;39(2):251–258. doi: 10.1111/j.1749-7345.2008.00155.x.
    1. Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, Krakoff J. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94(1):58–65. doi: 10.3945/ajcn.110.010132.
    1. Kang XL, Liu G, Liu YF, Xu QQ, Zhang M, Fang MY. Transcriptome profile at different physiological stages reveals potential mode for curly fleece in Chinese tan sheep. PLoS ONE. 2013;8(8):e71763. doi: 10.1371/journal.pone.0071763.
    1. Koetschan C, Kittelmann S, Lu JL, Al-Halbouni D, Jarvis GN, Müller T, Wolf M, Janssen PH. Internal transcribed spacer 1 secondary structure analysis reveals a common core throughout the anaerobic fungi (Neocallimastigomycota) PLoS ONE. 2014;9(3):e91928. doi: 10.1371/journal.pone.0091928.
    1. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71(12):8228–8235. doi: 10.1128/AEM.71.12.8228-8235.2005.
    1. Lyons PP, Turnbull JF, Dawson KA, Crumlish M. Exploring the microbial diversity of the distal intestinal lumen and mucosa of farmed rainbow trout Oncorhynchus mykiss (Walbaum) using next generation sequencing (NGS) Aquacult Res. 2015;48(1):77–91. doi: 10.1111/are.12863.
    1. Merrifield DL, Dimitroglou A, Bradley G, Baker RTM, Davies SJ. Soybean meal alters autochthonous microbial populations, microvilli morphology and compromises intestinal enterocyte integrity of rainbow trout, Oncorhynchus mykiss (Walbaum) J Fish Dis. 2009;32(9):755–766. doi: 10.1111/j.1365-2761.2009.01052.x.
    1. Nahid R, Perumal S, Klaus B. Evaluation of nutritional quality of moringa (Moringa oleifera Lam.) leaves as an alternative protein source for Nile tilapia (Oreochromis niloticus L.) Aquaculture. 2003;217(1–4):599–611.
    1. Navarrete P, Toledo I, Mardones P, Opazo R, Espejo R, Romero J. Effect of Thymus vulgaris essential oil on intestinal bacterial microbiota of rainbow trout, Oncorhynchus mykiss (Walbaum) and bacterial isolates. Aquacult Res. 2010;41(10):e667–e678.
    1. Ni JJ, Yan QY, Yu YH, Zhang TL. Factors influencing the grass carp gut microbiome and its effect on metabolism. FEMS Microbiol Ecol. 2014;87(3):704–714. doi: 10.1111/1574-6941.12256.
    1. Niu J, Du Q, Lin HZ, Cheng YQ, Huang Z, Wang Y, Wang J, Chen YF. Quantitative dietary methionine requirement of juvenile golden pompano Trachinotus ovatus at a constant dietary cystine level. Aquacult Nutr. 2013;19(5):677–686. doi: 10.1111/anu.12015.
    1. Pan Q, Liu S, Tan YG, Bi YZ. The effect of chromium picolinate on growth and carbohydrate utilization in tilapia, Oreochromis niloticus × Oreochromis aureus. Aquaculture. 2003;225(1):421–429. doi: 10.1016/S0044-8486(03)00306-5.
    1. Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30(21):3123–3124. doi: 10.1093/bioinformatics/btu494.
    1. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 2008;21(3):538–582. doi: 10.1128/CMR.00058-07.
    1. Rungrassamee W, Klanchui A, Maibunkaew S, Chaiyapechara S, Jiravanichaisal P, Karoonuthaisiri N. Characterization of intestinal bacteria in wild and domesticated adult black tiger shrimp (Penaeus monodon) PLoS ONE. 2014;9(3):e91853. doi: 10.1371/journal.pone.0091853.
    1. Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, Pamer EG, Abramson SB, Huttenhower C, Littman DR. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife. 2013;2:e01202. doi: 10.7554/eLife.01202.
    1. Schmidt V, Amaral-Zettler L, Davidson J, Summerfelt S, Good C. The influence of fishmeal-free diets on microbial communities in Atlantic salmon Salmo salar recirculation aquaculture systems. Appl Environ Microbiol. 2016;82:4470–4481. doi: 10.1128/AEM.00902-16.
    1. Spence C, Wells WG, Smith CJ. Characterization of the primary starch utilization operon in the obligate anaerobe Bacteroides fragilis: regulation by carbon source and oxygen. J Bacteriol. 2006;188(13):4663–4672. doi: 10.1128/JB.00125-06.
    1. Verner-Jeffreys DW, Shields RJ, Bricknell IR, Birkbeck TH. Changes in the gut-associated microflora during the development of Atlantic halibut (Hippoglossus hippoglossus L.) larvae in three British hatcheries. Aquaculture. 2003;219(1–4):21–42. doi: 10.1016/S0044-8486(02)00348-4.
    1. Wang YY, Gao PH, Wang L, Zhao ZZ, Chen YL, Yang YX. Bacterial community diversity associated with different levels of dietary in the rumen of sheep. Appl Microbiol Biotechnol. 2017;101:3717–3728. doi: 10.1007/s00253-017-8144-5.
    1. Wu SG, Gao TH, Zheng YZ, Wang WW, Cheng YY, Wang GT. Microbial diversity of intestinal contents and mucus in yellow catfish (Pelteobagrus fulvidraco) Aquaculture. 2010;303(1–4):1–7. doi: 10.1016/j.aquaculture.2009.12.025.
    1. Xi D, Li J, Kuang YW, Xu YM, Zhu XM. Influence of traffic exhausts on elements and polycyclic aromatic hydrocarbons in leaves of medicinal plant Broussonetia papyrifera. Atmos Pollut Res. 2013;4(4):370–375. doi: 10.5094/APR.2013.042.
    1. Xing MX, Hou ZH, Yuan JB, Yuan L, Qu YM, Liu B. Taxonomic and functional metagenomic profiling of gastrointestinal tract microbiome of the farmede adult turbot (Scophthalmus maximus) Fems Microbiol Ecol. 2013;86(3):432–443. doi: 10.1111/1574-6941.12174.
    1. Yan X, Luo XG, Zhao M. Metagenomic analysis of microbial community in uranium-contaminated soil. Appl Microbiol Biot. 2016;100(1):299–310. doi: 10.1007/s00253-015-7003-5.
    1. Ye L, Amberg J, Chapman D, Gaikowski M, Liu WT. Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J. 2014;8(3):541–551. doi: 10.1038/ismej.2013.181.
    1. Yu HN, Zhu J, Pan WS, Shen SR, Shan WG, Das UN. Effects of fish oil with a high content of n–3 polyunsaturated fatty acids on mouse gut microbiota. Arch Med Res. 2014;45(3):195–202. doi: 10.1016/j.arcmed.2014.03.008.

Source: PubMed

3
Iratkozz fel