The effect of acute stress on salivary markers of inflammation: a systematic review protocol

Danica C Slavish, Yvette Z Szabo, Danica C Slavish, Yvette Z Szabo

Abstract

Background: There is an increasing interest in the ability to non-invasively assess biological markers of stress. Measures of inflammation following exposure to acute stress have been assessed in saliva, but a systematic review and meta-analysis of the reliability of changes in response to stress has not been conducted. The proposed review aims to update and extend a prior review of this literature by performing a systematic review and meta-analysis, conducting moderator analyses, summarizing and reviewing best practices, and providing recommendations for future research.

Methods and analysis: The adopted search strategy will involve the electronic databases PubMed, PsycINFO, and Embase. We will include the articles identified by a 2015 narrative review on a similar topic, as well as use reference treeing to identify additional potentially relevant articles. Identified articles will be independently screened by title and abstract. The full text of potentially relevant articles will then be retrieved and read for full inclusion criteria. Data will be extracted, and random-effects meta-analyses will be conducted in R for articles determined to meet all inclusion criteria. The primary outcome will be the magnitude of changes in inflammatory biomarkers following acute stress exposure, as indicated by Cohen's d. Participant psychosocial or demographic (e.g., age, gender/sex, race/ethnicity, salivary flow rate, oral health status, health status) and methodological (e.g., stressor type, sample timing, assay technique, sample collection method, study quality) moderators of this response also will be examined using meta-regression.

Discussion: This systematic review will synthesize the evidence regarding salivary markers of inflammation in response to acute stress. We anticipate variation across studies but hypothesize that salivary markers of inflammation will increase in response to acute stress. The evidence obtained for this study will help guide future research by providing guidelines for the design and measurement of studies assessing salivary inflammation in response to acute stress. Findings will be disseminated with a peer-reviewed manuscript and an international conference presentation.

Keywords: Anti-inflammatory; Cytokines; Inflammation; Oral fluid; Pro-inflammatory; Saliva; Stress; Stressor; TSST.

Conflict of interest statement

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

    1. Steptoe A, Hamer M, Chida Y. The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav Immun. 2007;21:901–912. doi: 10.1016/j.bbi.2007.03.011.
    1. Marsland AL, Walsh C, Lockwood K, John-Henderson NA. The effects of acute psychological stress on circulating and stimulated inflammatory markers: a systematic review and meta-analysis. Brain Behav Immun. 2017;64:208–219. doi: 10.1016/j.bbi.2017.01.011.
    1. Fernandez-Botran R, Miller JJ, Burns VE, Newton TL. Correlations among inflammatory markers in plasma, saliva and oral mucosal transudate in post-menopausal women with past intimate partner violence. Brain Behav Immun. 2011;25:314–321. doi: 10.1016/j.bbi.2010.09.023.
    1. Dan H, Liu W, Wang J, Wang Z, Wu R, Chen Q, et al. Elevated IL-10 concentrations in serum and saliva from patients with oral lichen planus. Quintessence Int. 2011;42(2):157–163.
    1. Newton TL, Fernandez-Botran R, Miller JJ, Burns VE. Interleukin-6 and soluble interleukin-6 receptor levels in posttraumatic stress disorder: associations with lifetime diagnostic status and psychological context. Biol Psychol. 2014;99:150–159. doi: 10.1016/j.biopsycho.2014.03.009.
    1. La Fratta I, Tatangelo R, Campagna G, Rizzuto A, Franceschelli S, Ferrone A, et al. The plasmatic and salivary levels of IL-1β, IL-18 and IL-6 are associated to emotional difference during stress in young male. Sci Rep. 2018;8(1):3031. doi: 10.1038/s41598-018-21474-y.
    1. O'Connor MF, Irwin MR, Wellisch DK. When grief heats up: pro-inflammatory cytokines predict regional brain activation. Neuroimage. 2009;47(3):891–896. doi: 10.1016/j.neuroimage.2009.05.049.
    1. Wang Z, Mandel H, Levingston CA, Young MRI. An exploratory approach demonstrating immune skewing and a loss of coordination among cytokines in plasma and saliva of Veterans with combat-related PTSD. Hum Immunol. 2016;77(8):652–657. doi: 10.1016/j.humimm.2016.05.018.
    1. Sjögren E, Leanderson P, Kristenson M, Ernerudh J. Interleukin-6 levels in relation to psychosocial factors: studies on serum, saliva, and in vitro production by blood mononuclear cells. Brain Behav Immun. 2006;20:270–278. doi: 10.1016/j.bbi.2005.08.001.
    1. Out D, Hall RJ, Granger DA, Page GG, Woods SJ. Assessing salivary C-reactive protein: longitudinal associations with systemic inflammation and cardiovascular disease risk in women exposed to intimate partner violence. Brain Behav Immun. 2012;26(4):543–551. doi: 10.1016/j.bbi.2012.01.019.
    1. Slavish DC, Graham-Engeland JE, Smyth JM, Engeland CG. Salivary markers of inflammation in response to acute stress. Brain Behav Immun. 2015;44:253–69. doi: 10.1016/j.bbi.2014.08.008.
    1. Granger DA, Johnson SB, Szanton SL, Out D, Schumann LL. Incorporating salivary biomarkers into nursing research: an overview and review of best practices. Biol Res Nurs. 2012;14(4):347–356. doi: 10.1177/1099800412443892.
    1. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1. doi: 10.1186/2046-4053-4-1.
    1. Sackett D, Richardson W, Rosenberg W, Haynes R. How to practice and teach evidence-based medicine. New York: Churchill Livingstone; 1997. pp. 118–128.
    1. Schardt C, Adams MB, Owens T, Keitz S, Fontelo P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med Inform Decis Mak. 2007;7(1):16. doi: 10.1186/1472-6947-7-16.
    1. Slavish Danica C., Graham-Engeland Jennifer E., Smyth Joshua M., Engeland Christopher G. Salivary markers of inflammation in response to acute stress. Brain, Behavior, and Immunity. 2015;44:253–269. doi: 10.1016/j.bbi.2014.08.008.
    1. Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011. Available from .
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, The PG Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–269. doi: 10.7326/0003-4819-151-4-200908180-00135.
    1. Szabo YZ, Warnecke AJ, Newton TL, Valentine JC. Rumination and posttraumatic stress symptoms in trauma-exposed adults: a systematic review and meta-analysis. Anxiety Stress Coping. 2017;30(4):396–414. doi: 10.1080/10615806.2017.1313835.
    1. Schwarzer G. meta: general package for meta-analysis. 4.9-1 ed 2018.
    1. Cohen J. Statistical power analysis for the behavioral sciences. 2. Hillsdale: Lawrence Earlbaum Associates; 1988.
    1. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction to meta-analysis: John Wiley & Sons; 2011.
    1. Sterne JA, Hernan MA, Reeves BC, Savovic J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. Bmj. 2016;355:i4919. doi: 10.1136/bmj.i4919.
    1. Bei B, Wiley JF, Trinder J, Manber R. Beyond the mean: a systematic review on the correlates of daily intraindividual variability of sleep/wake patterns. Sleep Med Rev. 2016;28:108–124. doi: 10.1016/j.smrv.2015.06.003.
    1. Beards S, Gayer-Anderson C, Borges S, Dewey ME, Fisher HL, Morgan C. Life events and psychosis: a review and meta-analysis. Schizophr Bull. 2013;39(4):740–747. doi: 10.1093/schbul/sbt065.
    1. Shirtcliff EA, Granger DA, Schwartz E, Curran MJ. Use of salivary biomarkers in biobehavioral research: cotton-based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology. 2001;26(2):165–173. doi: 10.1016/S0306-4530(00)00042-1.
    1. Del Re A. A practical tutorial on conducting meta-analysis in R. Tutor Quant Methods Psychol. 2015;11(1):37–50. doi: 10.20982/tqmp.11.1.p037.
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560. doi: 10.1136/bmj.327.7414.557.
    1. Assessing risk of bias in included studies. In: Higgins JP, Altman DG, editors. Cochrane handbook for systematic reviews of interventions: Cochrane book series 2008. p. 187-241. .
    1. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA. 2000;283(15):2008–2012. doi: 10.1001/jama.283.15.2008.
    1. Szabo YZ, Fernandez-Botran R, Newton TL. Cumulative trauma, emotion reactivity and salivary cytokine levels following acute stress in healthy women. Anxiety Stress Coping. 2018;20:1–13.
    1. Rohleder N, Kudielka BM, Hellhammer DH, Wolf JM, Kirschbaum C. Age and sex steroid-related changes in glucocorticoid sensitivity of pro-inflammatory cytokine production after psychosocial stress. J Neuroimmunol. 2002;126:69–77. doi: 10.1016/S0165-5728(02)00062-0.
    1. Rohleder N, Schommer NC, Hellhammer DH, Engel R, Kirschbaum C. Sex differences in glucocorticoid sensitivity of proinflammatory cytokine production after psychosocial stress. Psychosom Med. 2001;63:966–972. doi: 10.1097/00006842-200111000-00016.
    1. Lynch EA, Dinarello CA, Cannon JG. Gender differences in IL-1 alpha, IL-1 beta, and IL-1 receptor antagonist secretion from mononuclear cells and urinary excretion. J Immunol. 1994;153(1):300–306.
    1. Darnall BD, Suarez EC. Sex and gender in psychoneuroimmunology research: past, present and future. Brain Behav Immun. 2009;23(5):595–604. doi: 10.1016/j.bbi.2009.02.019.
    1. Steptoe A, Owen N, Kunz-Ebrecht S, Mohamed-Ali V. Inflammatory cytokines, socioeconomic status, and acute stress responsivity. Brain Behav Immun. 2002;16:774–784. doi: 10.1016/S0889-1591(02)00030-2.
    1. Dickerson SS, Gable SL, Irwin MR, Aziz N, Kemeny ME. Social-evaluative threat and proinflammatory cytokine regulation: an experimental laboratory investigation. Psychol Sci. 2009;20(10):1237–1244. doi: 10.1111/j.1467-9280.2009.02437.x.
    1. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–926. doi: 10.1136/.
    1. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349:g7647. doi: 10.1136/bmj.g7647.

Source: PubMed

3
Iratkozz fel