Intraoperative radiotherapy for breast cancer treatment efficiently targets the tumor bed preventing breast adipose stromal cell outgrowth

Stefanie Uhlig, Anne Wuhrer, Sebastian Berlit, Benjamin Tuschy, Marc Sütterlin, Karen Bieback, Stefanie Uhlig, Anne Wuhrer, Sebastian Berlit, Benjamin Tuschy, Marc Sütterlin, Karen Bieback

Abstract

Objectives: Mesenchymal stromal cells (MSC) in bone marrow have been shown to be radioresistant, which is related to pronounced DNA repair mechanisms. Intraoperative radiotherapy (IORT) during breast-conserving surgery for early breast cancer is an innovative technique applying low energy x‑ray to the tumor bed immediately after removal of the tumor. IORT is considered to reduce the risk of local tumor recurrence by directly targeting cells of the tumor bed and altering the local microenvironment. Aim of this study was to investigate whether IORT affects the outgrowth potential of breast adipose tissue-derived MSC (bASC) as part of the tumor bed.

Materials and methods: After surgical tumor resection, biopsies of the tumor bed were taken before (pre IORT) and after IORT (post IORT) and processed applying well-established protocols for ASC isolation and characterization.

Results: In all, 95% of pre IORT tumor bed samples yielded persistently outgrowing bASC with typical ASC characteristics: fibroblastoid morphology, proliferation, adipogenic and osteogenic differentiation and ASC surface marker expression. However, none of the post IORT samples yielded persistent outgrowth of bASC.

Conclusions: After breast-conserving surgery, approximately 90% of local recurrences emerge in close proximity to the initial tumor bed, potentially reflecting a significant contribution of the tumor bed to relapse. Our data show that IORT, besides the proven effect on breast cancer cells, efficiently modifies the tumor environment by having an impact on tumor bed bASC. This effect on tumor bed stromal cells might contribute to reduce the risk of tumor relapse and metastases.

Keywords: Adipose stromal cells; Breast cancer; Intraoperative radiotherapy; Mesenchymal stromal cells; Tumor bed.

Conflict of interest statement

S. Uhlig, A. Wuhrer, S. Berlit, B. Tuschy, M. Sütterlin and K. Bieback declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Characterization of breast-derived adipose stromal cells (bASC). a Phase contrast photomicrographs in p0 of a pre and post IORT sample. The typical mesenchymal stromal cells(MSC)-like morphology is apparent in the pre intraoperative radiotherapy (IORT) sample. All cells attaching from the post IORT sample show a senescent phenotype: cells lose their fibroblastoid shape, become flat and huge with bundles of stress fibers. To allow for better comparison, contrast and brightness were slightly adjusted. b Exemplary figures of adipogeneic (ADA, Oil Red O stain) and osteogenic (ODA, von Kossa stain) differentiation results displaying the negative controls (top rows) and the adipogenic/osteogenic-differentiated samples (bottom rows). cd Flow cytometric assessment of MSC markers and ef markers indicating contamination and other markers used to characterize putative subpopulations of MSC. Data are expressed as percent positive cells or mean fluorescence values MFI (median FL-A). No differences were seen; thus data are merged from all conditions. MFI mean fluorescence intensity, ADA adipogenic differntiation assay, ODA osteogneic differentiation assay

References

    1. Welzel G, Boch A, Sperk E, Hofmann F, Kraus-Tiefenbacher U, Gerhardt A, Suetterlin M, Wenz F. Radiation-related quality of life parameters after targeted intraoperative radiotherapy versus whole breast radiotherapy in patients with breast cancer: results from the randomized phase III trial TARGIT-A. Radiat Oncol. 2013;8:9. doi: 10.1186/1748-717X-8-9.
    1. Herskind C, Ma L, Liu Q, Zhang B, Schneider F, Veldwijk MR, Wenz F. Biology of high single doses of IORT: RBE, 5 R’s, and other biological aspects. Radiat Oncol. 2017;12(1):24. doi: 10.1186/s13014-016-0750-3.
    1. Demicheli R, Valagussa P, Bonadonna G. Does surgery modify growth kinetics of breast cancer micrometastases? Br J Cancer. 2001;85(4):490–492. doi: 10.1054/bjoc.2001.1969.
    1. Son B, Lee S, Youn H, Kim E, Kim W, Youn B. The role of tumor microenvironment in therapeutic resistance. Oncotarget. 2017;8(3):3933–3945. doi: 10.18632/oncotarget.13907.
    1. Piotrowski I, Kulcenty K, Murawa D, Suchorska W. Surgical wound fluids from patients treated with intraoperative radiotherapy induce radiobiological response in breast cancer cells. Med Oncol. 2018;36(2):14. doi: 10.1007/s12032-018-1243-z.
    1. Belletti B, Vaidya JS, D’Andrea S, Entschladen F, Roncadin M, Lovat F, Berton S, Perin T, Candiani E, Reccanello S, Veronesi A, Canzonieri V, Trovo MG, Zaenker KS, Colombatti A, Baldassarre G, Massarut S. Targeted intraoperative radiotherapy impairs the stimulation of breast cancer cell proliferation and invasion caused by surgical wounding. Clin Cancer Res. 2008;14(5):1325–1332. doi: 10.1158/1078-0432.ccr-07-4453.
    1. Bieback K, Hecker A, Schlechter T, Hofmann I, Brousos N, Redmer T, Besser D, Kluter H, Muller AM, Becker M. Replicative aging and differentiation potential of human adipose tissue-derived mesenchymal stromal cells expanded in pooled human or fetal bovine serum. Cytotherapy. 2012;14(5):570–583. doi: 10.3109/14653249.2011.652809.
    1. Guo M, Dong Z, Qiao J, Yu C, Sun Q, Hu K, Liu G, Wei L, Yao B, Man Q, Sun X, Liu Z, Song Z, Yu C, Chen Y, Luo Q, Liu S, Ai HS. Severe acute radiation syndrome: treatment of a lethally 60Co-source irradiated accident victim in China with HLA-mismatched peripheral blood stem cell transplantation and mesenchymal stem cells. J Radiat Res. 2014;55(2):205–209. doi: 10.1093/jrr/rrt102.
    1. Nicolay NH, Lopez Perez R, Saffrich R, Huber PE. Radio-resistant mesenchymal stem cells: mechanisms of resistance and potential implications for the clinic. Oncotarget. 2015;6(23):19366–19380. doi: 10.18632/oncotarget.4358.
    1. Bartsch K, Al-Ali H, Reinhardt A, Franke C, Hudecek M, Kamprad M, Tschiedel S, Cross M, Niederwieser D, Gentilini C. Mesenchymal stem cells remain host-derived independent of the source of the stem-cell graft and conditioning regimen used. Transplantation. 2009;87(2):217–221. doi: 10.1097/TP.0b013e3181938998.
    1. D’Andrea FP, Horsman MR, Kassem M, Overgaard J, Safwat A. Tumourigenicity and radiation resistance of mesenchymal stem cells. Acta Oncol. 2012;51(5):669–679. doi: 10.3109/0284186x.2011.636752.
    1. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315–317. doi: 10.1080/14653240600855905.
    1. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT) Cytotherapy. 2013;15(6):641–648. doi: 10.1016/j.jcyt.2013.02.006.
    1. Fekete N, Erle A, Amann EM, Furst D, Rojewski MT, Langonne A, Sensebe L, Schrezenmeier H, Schmidtke-Schrezenmeier G. Effect of high-dose irradiation on human bone-marrow-derived mesenchymal stromal cells. Tissue Eng Part C Methods. 2015;21(2):112–122. doi: 10.1089/ten.TEC.2013.0766.
    1. Alessio N, Del Gaudio S, Capasso S, Di Bernardo G, Cappabianca S, Cipollaro M, Peluso G, Galderisi U. Low dose radiation induced senescence of human mesenchymal stromal cells and impaired the autophagy process. Oncotarget. 2015;6(10):8155–8166. doi: 10.18632/oncotarget.2692.
    1. Vaidya JS, Wenz F, Bulsara M, Tobias JS, Joseph DJ, Keshtgar M, Flyger HL, Massarut S, Alvarado M, Saunders C, Eiermann W, Metaxas M, Sperk E, Sutterlin M, Brown D, Esserman L, Roncadin M, Thompson A, Dewar JA, Holtveg HM, Pigorsch S, Falzon M, Harris E, Matthews A, Brew-Graves C, Potyka I, Corica T, Williams NR, Baum M. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer: 5-year results for local control and overall survival from the TARGIT-A randomised trial. Lancet. 2014;383(9917):603–613. doi: 10.1016/S0140-6736(13)61950-9.
    1. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449(7162):U557–U554. doi: 10.1038/nature06188.
    1. Klopp AH, Spaeth EL, Dembinski JL, Woodward WA, Munshi A, Meyn RE, Cox JD, Andreeff M, Marini FC. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 2007;67(24):11687–11695. doi: 10.1158/0008-5472.Can-07-1406.
    1. Zielske SP, Livant DL, Lawrence TS. Radiation increases invasion of gene-modified mesenchymal stem cells into tumors. Int J Radiat Oncol Biol Phys. 2009;75(3):843–853. doi: 10.1016/j.ijrobp.2008.06.1953.

Source: PubMed

3
Iratkozz fel