Effect of a Very-Low-Calorie Ketogenic Diet on Circulating Myokine Levels Compared with the Effect of Bariatric Surgery or a Low-Calorie Diet in Patients with Obesity

Ignacio Sajoux, Paula M Lorenzo, Diego Gomez-Arbelaez, M Angeles Zulet, Itziar Abete, Ana I Castro, Javier Baltar, María P Portillo, Francisco J Tinahones, J Alfredo Martinez, Ana B Crujeiras, Felipe F Casanueva, Ignacio Sajoux, Paula M Lorenzo, Diego Gomez-Arbelaez, M Angeles Zulet, Itziar Abete, Ana I Castro, Javier Baltar, María P Portillo, Francisco J Tinahones, J Alfredo Martinez, Ana B Crujeiras, Felipe F Casanueva

Abstract

: The preservation of muscle mass and muscle function after weight loss therapy is currently a considerable challenge in the fight against obesity. Muscle mass secretes proteins called myokines that have relevant functions in the regulation of metabolism and health. This study was aimed to evaluate whether a very low-calorie ketogenic (VLCK) diet may modulate myokine levels, in addition to changes in body composition, compared to a standard, balanced low-calorie (LC) diet or bariatric surgery in patients with obesity. Body composition, ketosis, insulin sensitivity and myokines were evaluated in 79 patients with overweight/obesity after a therapy to lose weight with a VLCK diet, a LC diet or bariatric surgery. The follow-up was 6 months. The weight loss therapies induced changes in myokine levels in association with changes in body composition and biochemical parameters. The effects on circulating myokine levels compared to those at baseline were stronger after the VLCK diet than LC diet or bariatric surgery. Differences reached statistical significance for IL-8, MMP2 and irisin. In conclusion, nutritional interventions or bariatric surgery to lose weight induces changes in circulating myokine levels, being this effect potentially most notable after following a VLCK diet.

Keywords: PnK method; bariatric surgery; body composition; fat free mass; ketogenic diet; low-calorie diet; obesity; protein diet; very low-energy diet.

Conflict of interest statement

A.B.C. and F.F.C. received advisory board fees and/or research grants from Pronokal Protein Supplies, Spain. I.S. is the Medical Director of Pronokal, Spain..

Figures

Figure 1
Figure 1
Effect of the weight-loss therapies on body weight and body composition during a follow-up period of 4–6 months. Data show differences compared to baseline for body weight (a), fat mass (b) and fat-free mass (c) after a very-low calorie ketogenic diet (VLCKD), a low-calorie diet (LCD) or bariatric surgery. Data are shown as mean values. ‡ Statistically significant (p < 0.05) changes across time calculated with repeated-measures ANOVA.
Figure 2
Figure 2
Comparison of circulating levels of myokines according to adiposity at baseline. Differences in interleukin (IL)-8, IL-6, matrix metalloproteinase-2 (MMP2) and irisin levels between normal-weight healthy individuals and patients with excess body weight, classified according to the body mass index as overweight (25–29.9), obesity (30–39.9) and morbid obesity (≥40). Data are presented as the mean; error bars represent the standard error. Asterisk (*) denotes statistically significant differences (p < 0.05) in relation to normal-weight individuals evaluated using ANOVA or ANCOVA adjusted for age, as applicable.
Figure 3
Figure 3
Changes in circulating myokine levels during a very-low calorie ketogenic diet (VLCKD), a low-calorie diet (LCD) or bariatric surgery. (a) Changes compared to baseline in interleukin (IL)-8 during the weight loss treatments. (b) Changes compared to baseline in circulating IL-6 levels during the weight loss treatments. (c) Changes compared to baseline in circulating metalloproteinase-2 (MMP2) levels during the weight loss treatments. (d) Changes compared to baseline in circulating irisin levels during the weight loss treatments. Data show differences compared to baseline during the time-course of the intervention. ‡ Statistically significant differences over the duration of the nutritional program (from 0 to 4–6 months) evaluated with repeated-measures ANOVA or ANCOVA adjusted for age, as applicable. * Statistically significant differences in relation to baseline evaluated by Student’s t-test within each weight loss treatment. † Statistically significant differences among the three therapeutic procedures to lose weight evaluated by univariate ANOVA.
Figure 4
Figure 4
Scatterplot representing the association between weight loss treatment-induced differences from baseline (Δ) at endpoint (2–3 months) in fat-free mass (FFM) and differences in circulating levels of interleukine-8 (IL-8) at endpoint and at follow-up (6 months). In the plots each point refers individual changes. The center line represents the linear regression trendline. The lines above and below the center line represent the upper and lower bounds of the 95% confidence interval around the trendline. VLCKD, very-low calorie ketogenic diet, LCD; low-calorie diet; r, correlation coefficient evaluated by the Rho Spearman test; p, p value.

References

    1. NCD Risk Factor Collaboration (NCD-RisC) Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128·9 Million Children, Adolescents, and Adults. Lancet. 2017;390:2627–2642. doi: 10.1016/S0140-6736(17)32129-3.
    1. Apovian C.M., Aronne L.J., Bessesen D.H., McDonnell M.E., Murad M.H., Pagotto U., Ryan D.H., Still C.D. Endocrine Society. Pharmacological Management of Obesity: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2015;100:342–362. doi: 10.1210/jc.2014-3415.
    1. Bray G.A., Heisel W.E., Afshin A., Jensen M.D., Dietz W.H., Long M., Kushner R.F., Daniels S.R., Wadden T.A., Tsai A.G., et al. The Science of Obesity Management: An Endocrine Society Scientific Statement. Endocr. Rev. 2018;39:79–132. doi: 10.1210/er.2017-00253.
    1. Cava E., Yeat N.C., Mittendorfer B. Preserving Healthy Muscle during Weight Loss. Adv. Nutr. 2017;8:511–519. doi: 10.3945/an.116.014506.
    1. Verreijen A.M., Engberink M.F., Memelink R.G., van der Plas S.E., Visser M., Weijs P.J.M. Effect of a High Protein Diet and/or Resistance Exercise on the Preservation of Fat Free Mass during Weight Loss in Overweight and Obese Older Adults: A Randomized Controlled Trial. Nutr. J. 2017;16:10. doi: 10.1186/s12937-017-0229-6.
    1. Gomez-Arbelaez D., Bellido D., Castro A.I., Ordoñez-Mayan L., Carreira J., Galban C., Martinez-Olmos M.A., Crujeiras A.B., Sajoux I., Casanueva F.F. Body Composition Changes after Very Low-Calorie-Ketogenic Diet in Obesity Evaluated by Three Standardized Methods. J. Clin. Endocrinol. Metab. 2016;102:2016–2385. doi: 10.1210/jc.2016-2385.
    1. Frimel T.N., Sinacore D.R., Villareal D.T. Exercise Attenuates the Weight-Loss-Induced Reduction in Muscle Mass in Frail Obese Older Adults. Med. Sci. Sports Exerc. 2008;40:1213–1219. doi: 10.1249/MSS.0b013e31816a85ce.
    1. Bonfanti N., Fernández J.M., Gomez-Delgado F., Pérez-Jiménez F. Effect of two hypocaloric diets and their combination with physical exercise on basal metabolic rate and body composition. Nutr. Hosp. 2014;29:635–643. doi: 10.3305/nh.2014.29.3.7119.
    1. Jastrzębska-Mierzyńska M., Ostrowska L., Hady H.R., Dadan J., Konarzewska-Duchnowska E. The Impact of Bariatric Surgery on Nutritional Status of Patients. Wideochir Inn. Tech. Maloinwazyjne. 2015;10:115–124. doi: 10.5114/wiitm.2014.47764.
    1. Merra G., Miranda R., Barrucco S., Gualtieri P., Mazza M., Moriconi E., Marchetti M., Chang T.F.M., De Lorenzo A., Di Renzo L. Very-Low-Calorie Ketogenic Diet with Aminoacid Supplement versus Very Low Restricted-Calorie Diet for Preserving Muscle Mass during Weight Loss: A Pilot Double-Blind Study. Eur. Rev. Med. Pharmacol. Sci. 2016;20:2613–2621.
    1. Ahima R.S., Park H.K. Connecting Myokines and Metabolism. Endocrinol. Metab. 2015;30:235–245. doi: 10.3803/EnM.2015.30.3.235.
    1. Lee J.H., Jun H.S. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front. Physiol. 2019;10:42. doi: 10.3389/fphys.2019.00042.
    1. Pedersen B.K., Febbraio M.A. Muscle as an Endocrine Organ: Focus on Muscle-Derived Interleukin-6. Physiol. Rev. 2008;88:1379–1406. doi: 10.1152/physrev.90100.2007.
    1. Ibrahim M.M., Choo S. Salivary Leptin Level in Young Adult Males and Its Association with Anthropometric Measurements, Fat Distribution and Muscle Mass. Eur. Endocrinol. 2018;14:94–98. doi: 10.17925/EE.2018.14.2.94.
    1. León H.H., Melo C.A., Ramírez J.F. Role of the Myokines Production through the Exercise. J. Sport Health Res. 2012;4:157–166.
    1. Leal L.G., Lopes M.A., Batista M.L.J. Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Front. Physiol. 2018;9:1307. doi: 10.3389/fphys.2018.01307.
    1. Nakagawa K., Tamaki H., Hayao K., Yotani K., Ogita F., Yamamoto N., Onishi H. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy. Biomed Res. Int. 2017;2017:5695217. doi: 10.1155/2017/5695217.
    1. Pratesi A. Skeletal Muscle: An Endocrine Organ. Clin. Cases Miner. Bone Metab. 2013;10:11–14. doi: 10.11138/ccmbm/2013.10.1.011.
    1. Jaoude J., Koh Y. Matrix Metalloproteinases in Exercise and Obesity. Vasc. Health Risk Manag. 2016;12:287–295. doi: 10.2147/VHRM.S103877.
    1. Crujeiras A.B., Pardo M., Casanueva F.F. Irisin: ‘Fat’ or Artefact. Clin. Endocrinol. 2015;82:467–474. doi: 10.1111/cen.12627.
    1. De Luis D., Domingo J.C., Izaola O., Casanueva F.F., Bellido D., Sajoux I. Effect of DHA Supplementation in a Very Low-Calorie Ketogenic Diet in the Treatment of Obesity: A Randomized Clinical Trial. Endocrine. 2016;54:111–122. doi: 10.1007/s12020-016-0964-z.
    1. Moreno B., Bellido D., Sajoux I., Goday A., Saavedra D., Crujeiras A.B., Casanueva F.F. Comparison of a Very Low-Calorie-Ketogenic Diet with a Standard Low-Calorie Diet in the Treatment of Obesity. Endocrine. 2014;47:793–805. doi: 10.1007/s12020-014-0192-3.
    1. Moreno B., Crujeiras A.B., Bellido D., Sajoux I., Casanueva F.F. Obesity Treatment by Very Low-Calorie-Ketogenic Diet at Two Years: Reduction in Visceral Fat and on the Burden of Disease. Endocrine. 2016;54:681–690. doi: 10.1007/s12020-016-1050-2.
    1. EFSA Scientific Opinion on the Essential Composition of Total Diet Replacements for Weight Control. EFSA J. 2015;13:3957. doi: 10.2903/j.efsa.2015.3957.
    1. Crujeiras A.B., Cabia B., Carreira M.C., Amil M., Cueva J., Andrade S., Seoane L.M., Pardo M., Sueiro A., Baltar J., et al. Secreted Factors Derived from Obese Visceral Adipose Tissue Regulate the Expression of Breast Malignant Transformation Genes. Int. J. Obes. 2016;40:514–523. doi: 10.1038/ijo.2015.208.
    1. Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883.
    1. Lee Y.J., Heo Y.-S., Park H.S., Lee S.H., Lee S.K., Jang Y.J. Serum SPARC and Matrix Metalloproteinase-2 and Metalloproteinase-9 Concentrations after Bariatric Surgery in Obese Adults. Obes. Surg. 2014;24:604–610. doi: 10.1007/s11695-013-1111-z.
    1. Crujeiras A.B., Pardo M., Arturo R.-R., Navas-Carretero S., Zulet M.A., Martínez J.A., Casanueva F.F. Longitudinal Variation of Circulating Irisin after an Energy Restriction-Induced Weight Loss and Following Weight Regain in Obese Men and Women. Am. J. Hum. Biol. 2014;26:198–207. doi: 10.1002/ajhb.22493.
    1. Duzova H., Gullu E., Cicek G., Koksal B.K., Kayhan B., Gullu A., Sahin I. The Effect of Exercise Induced Weight-Loss on Myokines and Adipokines in Overweight Sedentary Females: Steps-Aerobics vs. Jogging-Walking Exercises. J. Sports Med. Phys. Fit. 2018;58:295–308. doi: 10.23736/S0022-4707.16.06565-8.
    1. Pedersen B.K. Muscles and Their Myokines. J. Exp. Biol. 2011;214:337–346. doi: 10.1242/jeb.048074.
    1. Kim J.E., O’Connor L.E., Sands L.P., Slebodnik M.B., Campbell W.W. Effects of Dietary Protein Intake on Body Composition Changes after Weight Loss in Older Adults: A Systematic Review and Meta-Analysis. Nutr. Rev. 2016;74:210–224. doi: 10.1093/nutrit/nuv065.
    1. Gomez-Arbelaez D., Crujeiras A.B., Castro A.I., Martinez-Olmos M.A., Canton A., Ordoñez-Mayan L., Sajoux I., Galban C., Bellido D., Casanueva F.F. Resting Metabolic Rate of Obese Patients under Very Low Calorie Ketogenic Diet. Nutr. Metab. 2018;15:18. doi: 10.1186/s12986-018-0249-z.
    1. Crujeiras A.B., Gomez-Arbelaez D., Zulet M.A., Carreira M.C., Sajoux I., de Luis D., Castro A.I., Baltar J., Baamonde I., Sueiro A., et al. Plasma FGF21 Levels in Obese Patients Undergoing Energy-Restricted Diets or Bariatric Surgery: A Marker of Metabolic Stress? Int. J. Obes. 2017;41:1570–1578. doi: 10.1038/ijo.2017.138.
    1. Arvidsson E., Viguerie N., Andersson I., Verdich C., Langin D., Arner P. Effects of Different Hypocaloric Diets on Protein Secretion from Adipose Tissue of Obese Women. Diabetes. 2004;53:1966–1971. doi: 10.2337/diabetes.53.8.1966.
    1. Crujeiras A.B., Parra D., Milagro F.I., Goyenechea E., Larrarte E., Margareto J., Martínez J.A. Differential Expression of Oxidative Stress and Inflammation Related Genes in Peripheral Blood Mononuclear Cells in Response to a Low-Calorie Diet: A Nutrigenomics Study. OMICS A J. Integr. Biol. 2008;12:251–261. doi: 10.1089/omi.2008.0001.
    1. Bouloumié A., Sengenès C., Portolan G., Galitzky J., Lafontan M. Adipocyte Produces Matrix Metalloproteinases 2 and 9: Involvement in Adipose Differentiation. Diabetes. 2001;50:2080–2086. doi: 10.2337/diabetes.50.9.2080.
    1. Chavey C., Mari B., Monthouel M.-N., Bonnafous S., Anglard P., Van Obberghen E., Tartare-Deckert S. Matrix Metalloproteinases Are Differentially Expressed in Adipose Tissue during Obesity and Modulate Adipocyte Differentiation. J. Biol. Chem. 2003;278:11888–11896. doi: 10.1074/jbc.M209196200.
    1. Hopps E., Caimi G. Matrix Metalloproteinases in Metabolic Syndrome. Eur. J. Intern. Med. 2012;23:99–104. doi: 10.1016/j.ejim.2011.09.012.
    1. Ress C., Tschoner A., Ciardi C., Laimer M.W., Engl J.W., Sturm W., Weiss H., Tilg H., Ebenbichler C.F., Patsch J.R., et al. Influence of Significant Weight Loss on Serum Matrix Metalloproteinase (MMP)-7 Levels. Eur. Cytokine Netw. 2010;21:65–70. doi: 10.1684/ecn.2009.0177.
    1. Scheede-Bergdahl C., Bergdahl A., Schjerling P., Qvortrup K., Koskinen S.O., Dela F. Exercise-Induced Regulation of Matrix Metalloproteinases in the Skeletal Muscle of Subjects with Type 2 Diabetes. Diabetes Vasc. Dis. Res. 2014;11:324–334. doi: 10.1177/1479164114535943.
    1. Perakakis N., Triantafyllou G.A., Fernández-Real J.M., Huh J.Y., Park K.H., Seufert J., Mantzoros C.S. Physiology and Role of Irisin in Glucose Homeostasis. Nat. Rev. Endocrinol. 2017;13:324–337. doi: 10.1038/nrendo.2016.221.
    1. Huh J.Y., Panagiotou G., Mougios V., Brinkoetter M., Vamvini M.T., Schneider B.E., Mantzoros C.S. FNDC5 and Irisin in Humans: I. Predictors of Circulating Concentrations in Serum and Plasma and II. MRNA Expression and Circulating Concentrations in Response to Weight Loss and Exercise. Metabolism. 2012;61:1725–1738. doi: 10.1016/j.metabol.2012.09.002.
    1. Roca-Rivada A., Castelao C., Senin L.L., Landrove M.O., Baltar J., Belén Crujeiras A., Seoane L.M., Casanueva F.F., Pardo M. FNDC5/Irisin Is Not Only a Myokine but Also an Adipokine. PLoS ONE. 2013;8:60563. doi: 10.1371/journal.pone.0060563.
    1. Goday A., Bellido D., Sajoux I., Crujeiras A.B., Burguera B., García-Luna P.P., Oleaga A., Moreno B., Casanueva F.F. Short-Term Safety, Tolerability and Efficacy of a Very Low-Calorie-Ketogenic Diet Interventional Weight Loss Program versus Hypocaloric Diet in Patients with Type 2 Diabetes Mellitus. Nutr. Diabetes. 2016;6:230. doi: 10.1038/nutd.2016.36.
    1. Gomez-Arbelaez D., Crujeiras A.B., Castro A.I., Goday A., Mas-Lorenzo A., Bellon A., Tejera C., Bellido D., Galban C., Sajoux I., et al. Acid–Base Safety during the Course of a Very Low-Calorie-Ketogenic Diet. Endocrine. 2017;58:81–90. doi: 10.1007/s12020-017-1405-3.
    1. Ma S., Huang Q., Tominaga T., Liu C., Suzuki K. An 8-Week Ketogenic Diet Alternated Interleukin-6, Ketolytic and Lipolytic Gene Expression, and Enhanced Exercise Capacity in Mice. Nutrients. 2018;10:1696. doi: 10.3390/nu10111696.
    1. Castro A.I., Gomez-Arbelaez D., Crujeiras A.B., Granero R., Aguera Z., Jimenez-Murcia S., Sajoux I., Lopez-Jaramillo P., Fernandez-Aranda F., Casanueva F.F. Effect of A Very Low-Calorie Ketogenic Diet on Food and Alcohol Cravings, Physical and Sexual Activity, Sleep Disturbances, and Quality of Life in Obese Patients. Nutrients. 2018;10:1348. doi: 10.3390/nu10101348.

Source: PubMed

3
Iratkozz fel