Lung protective strategies in anaesthesia

B Kilpatrick, P Slinger, B Kilpatrick, P Slinger

Abstract

Patients are at risk for several types of lung injury in the perioperative period including atelectasis, pneumonia, pneumothorax, acute lung injury, and acute respiratory distress syndrome. Anaesthetic management can cause, exacerbate, or ameliorate these injuries. This review examines the effects of perioperative mechanical ventilation and its role in ventilator-induced lung injury. Lung protective ventilatory strategies to specific clinical situations such as cardiopulmonary bypass and one-lung ventilation along with newer novel lung protective strategies are discussed.

Figures

Fig 1
Fig 1
(a) An inspiratory compliance curve (lung volume vs airway pressure) during OLV as the lung is slowly inflated by 100 ml increments in a patient with mild COPD. The lower inflection point of the curve (thought to represent FRC) is at 7 cm H2O. During OLV, this patient developed intrinsic PEEP (measured by the end-expiratory airway occlusion plateau pressure ‘auto-PEEP’) of 6 cm H2O. The addition of 5 cm H2O of PEEP in this patient raised the end-expiratory lung volume above FRC, thus raising pulmonary vascular resistance in the ventilated lung and caused a deterioration in oxygenation. (b) The inspiratory compliance curve during OLV in a patient with normal pulmonary function. The lower inflection point of the curve is at 6 cm H2O. During OLV, this patient developed intrinsic PEEP of 2 cm H2O. The addition of 5 cm H2O of PEEP raised the end-expiratory lung volume to FRC, thus decreasing pulmonary vascular resistance in the ventilated lung and caused an improvement in oxygenation. Based on data from Slinger and colleagues.
Fig 2
Fig 2
Impact of intraoperative lung protective strategies in lung cancer surgery. Comparison of historical control group vs lung protective ventilation group in patients undergoing OLV for lung cancer surgery showed significant benefits in terms of reduced ALI, atelectasis, and ICU admissions.

References

    1. Smetana G. Postoperative pulmonary complications: An update on risk assessment and reduction. Cleve Clin J Med. 2009;76:60–65. doi: 10.3949/ccjm.76.s4.10.
    1. Bendixen HH, Hedley-White J, Laver MB. Impaired oxygenation in surgical patients during general anesthesia with controlled ventilation: a concept of atelectasis. N Engl J Med. 1963;96:156–166.
    1. Tenny SM, Remmers JE. Comparative quantitative morphology of the mammalian lung: diffusing area. Nature. 1963;196:54–56. doi: 10.1038/197054a0.
    1. Gajic O, Dara SI, Mendez JL, et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004;32:1817–1824. doi: 10.1097/01.CCM.0000133019.52531.30.
    1. Gajic O, Frutos-Vivar F, Esteban A, et al. Ventilator settings as a risk factor for acute respiratory distress syndrome in mechanically ventilated patients. Intensive Care Med. 2005;31:922–926. doi: 10.1007/s00134-005-2625-1.
    1. Michelet P, D’Journo X-B, Roch A, et al. Protective ventilation influences systemic inflammation after esophagectomy: a randomized controlled study. Anesthesiology. 2006;105:911–919. doi: 10.1097/00000542-200611000-00011.
    1. de Oliveira RP, Hetzel MP, Silva M, Dallegrave D, Friedman G. Mechanical ventilation with high tidal volume induces inflammation in patients without lung disease. Crit Care. 2010;14:R39. doi: 10.1186/cc8919.
    1. Choi G, Wolthuis EK, Bresser P, et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology. 2006;105:689–695. doi: 10.1097/00000542-200610000-00013.
    1. Determann R, Royakkers A, Wolthuis EK, et al. Ventilation with lower tidal volumes as compared with conventional tidal volumes for patients without acute lung injury: a preventive randomized controlled trial. Crit Care. 2010;14:R1. doi: 10.1186/cc8230.
    1. Wolthuis EK, Vlaar APJ, Choi G, Roelofs JJTH, Juffermans NP, Schults MJ. Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice. Crit Care. 2009;13:R1. doi: 10.1186/cc7688.
    1. Ng CSH, Song Wan, Ho AMH, Underwood MJ. Gene expression changes with a ‘non-injurious’ ventilation strategy. Crit Care. 2009;13:403. doi: 10.1186/cc7719.
    1. Fernandez-Perez ER, Sprung J, Alessa B, et al. Intraoperative ventilator settings and acute lung injury after elective surgery: a nested case control study. Thorax. 2009;64:121–127. doi: 10.1136/thx.2008.102228.
    1. Blum JM, Fetterman DM, Park PK, Morris M, Rosenberg AL. A description of intraoperative ventilator management and ventilation strategies in hypoxic patients. Anesth Analg. 2010;110:1616–1622. doi: 10.1213/ANE.0b013e3181da82e1.
    1. Lionetti V, Recchia FA, Ranieri VM. Overview of ventilator-induced lung injury mechanisms. Curr Opin Crit Care. 2005;11:82–86. doi: 10.1097/00075198-200502000-00013.
    1. Dos Santos CC, Slutsky AS. Cellular responses to mechanical stress. Invited review: mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol. 2000;89:1645–1655.
    1. Imai Y, Parodo J, Kajikawa O, et al. Injurious mechanical ventilation and end-organ epithelial cell apoptosis and organ dysfunction in an experimental model of acute respiratory distress syndrome. J Am Med Assoc. 2003;280:2104–2112. doi: 10.1001/jama.289.16.2104.
    1. Hegeman MA, Henmus MP, Heijnen CJ, et al. Ventilator-induced endothelial activation and inflammation in the lung and distal organs. Crit Care. 2009;13:R182. doi: 10.1186/cc8168.
    1. Muders T, Wrigge H. New insights into experimental evidence on atelectasis and causes of lung injury. Best Prac Res Clin Anaesthesiol. 2010;24:171–182. doi: 10.1016/j.bpa.2010.02.009.
    1. Duggan M, Kavanagh B. Pulmonary atelectasis: a pathogenic perioperative entity. Anesthesiology. 2005;102:834–854.
    1. Richard JC, Maggiore SM, Jonson B, et al. Influence of tidal volume on alveolar recruitment. Am J Respir Crit Care Med. 2001;163:1609–1613.
    1. Cai H, Gong H, Zhang L, Wang Y, Tian Y. Effect of low tidal volume ventilation on atelectasis in patients during general anesthesia: a computed tomographic scan. J Clin Anesth. 2007;19:125–129. doi: 10.1016/j.jclinane.2006.08.008.
    1. Tusman G, Bohm SH, Suarez-Shipman F. Alveolar recruitment improves ventilatory efficiency of the lungs during anesthesia. Can J Anaesth. 2004;51:723–727. doi: 10.1007/BF03018433.
    1. Tusman G, Bohm SH. Prevention and reversal of lung collapse during the intra-operative period. Best Prac Res Clin Anaesth. 2010;24:183–197. doi: 10.1016/j.bpa.2010.02.006.
    1. Squadrone V, Coha M, Cerutti E, et al. Continuous positive airway pressure for the treatment of postoperative hypoxemia: a randomized controlled trial. J Am Med Assoc. 2005;293:589–595. doi: 10.1001/jama.293.5.589.
    1. Zeldin RA, Normadin D, Landtwing BS, Peters RM. Postpneumonectomy pulmonary edema. J Thorac Cardiovasc Surg. 1984;87:359–365.
    1. Turnage WS, Lunn JL. Postpneumonectomy pulmonary edema. A retrospective analysis of associated variables. Chest. 1993;103:1646–1650. doi: 10.1378/chest.103.6.1646.
    1. Waller DA, Gebitekin C, Saundres NR, Walker DR. Noncardiogenic pulmonary edema complicating lung resection. Ann Thorac Surg. 1993;55:140–143. doi: 10.1016/0003-4975(93)90490-9.
    1. Licker M, de Perrot M, Spiliopoulos A, et al. Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg. 2003;97:1558–1565. doi: 10.1213/01.ANE.0000087799.85495.8A.
    1. Padley SPG, Jordan SJ, Goldstraw P, Wells AU, Hansell DM. Asymmetric ARDS following pulmonary resection: CT findings initial observations. Radiology. 2002;223:468–473. doi: 10.1148/radiol.2232010721.
    1. Waller DA, Keavey P, Woodfine L, Dark JH. Pulmonary endothelial permeability changes after major resection. Ann Thorac Surg. 1996;61:1435–1440. doi: 10.1016/0003-4975(96)00103-8.
    1. Williams EA, Quinlan GJ, Goldstraw P, Gothard JW, Evans TW. Postoperative lung injury and oxidative damage in patients undergoing pulmonary resection. Eur Respir J. 1998;11:1028–1034. doi: 10.1183/09031936.98.11051028.
    1. Tayama K, Takamori S, Mitsuoka M, et al. Natriuretic peptides after pulmonary resection. Ann Thorac Surg. 2002;73:1582–1586. doi: 10.1016/S0003-4975(02)03417-3.
    1. Misthos P, Katsaragakis S, Milingos N, et al. Postresectional pulmonary oxidative stress in lung cancer patients. The role of one-lung ventilation. Eur J Cardiothorac Surg. 2005;27:370–383.
    1. Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137:1159–1164.
    1. Slinger P, Hickey DR. The interaction between applied PEEP and auto-PEEP during one-lung ventilation. J Cardiothorac Vasc Anesth. 1998;12:133–136. doi: 10.1016/S1053-0770(98)90318-4.
    1. Capan LM, Turndorf H, Patel C, Ramanathan S, Acinapura A, Chalon J. Optimization of arterial oxygenation during one-lung anesthesia. Anesth Analg. 1980;59:847–851.
    1. Slinger PD, Kruger M, McRae K, Winton T. Relation of the static compliance curve and positive end-expiratory pressure to oxygenation during one-lung ventilation. Anesthesiology. 2001;95:1096–1102. doi: 10.1097/00000542-200111000-00012.
    1. Gama de Abreu M, Heintz M, Heller A, Széchényi R, Albrecht DM, Koch T. One-lung ventilation with high tidal volumes and zero positive end-expiratory pressure is injurious in the isolated rabbit lung model. Anesth Analg. 2003;96:220–228. doi: 10.1097/00000539-200301000-00045.
    1. van der Werff YD, van der Houwen HK, Heijmans PJ, et al. Postpneumonectomy pulmonary edema. A retrospective analysis of incidence and possible risk factors. Chest. 1997;111:1278–1284. doi: 10.1378/chest.111.5.1278.
    1. Fernández-Pérez ER, Keegan MT, Brown DR, Hubmayr RD, Gajic O. Intraoperative tidal volume as a risk factor for respiratory failure after pneumonectomy. Anesthesiology. 2006;105:14–18. doi: 10.1097/00000542-200607000-00007.
    1. Boker A, Haberman CJ, Girling L, et al. Variable ventilation improves perioperative lung function in patients undergoing abdominal aortic aneurysmectomy. Anesthesiology. 2004;100:608–616. doi: 10.1097/00000542-200403000-00022.
    1. Mols G, Priebe HJ, Guttmann J. Alveolar recruitment in acute lung injury. Br J Anaesth. 2006;96:156–166. doi: 10.1093/bja/aei299.
    1. Licker M, Diaper J, Villiger Y, et al. Impact of intraoperative lung-protective interventions in patients undergoing lung cancer surgery. Crit Care. 2009;13:R41. doi: 10.1186/cc7762.
    1. Alvarez JM, Panda RK, Newman MA, Slinger P, Deslauriers J, Ferguson M. Postpneumonectomy pulmonary edema. J Cardiothorac Vasc Anesth. 2003;17:388–395. doi: 10.1016/S1053-0770(03)00071-5.
    1. Kregenow DA, Rubenfeld GD, Hudson LD, Swenson ER. Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med. 2006;34:1–7. doi: 10.1097/01.CCM.0000194533.75481.03.
    1. Curley G, Laffey JG, Kavanagh BP. Bench-to-bedside: carbon dioxide. Crit Care. 2010;14:220. doi: 10.1186/cc8926.
    1. Shibata K, Cregg N, Engleberts D, et al. Hypercapnic acidosis may attenuate acute lung injury by inhibition of endogenous xanthine oxidase. Am J Resp Crit Care Med. 1998;158:1578–1584.
    1. Costello J, Higgins B, Contreras M, et al. Hypercapnic acidosis attenuates shock and lung injury in early and prolonged systemic sepsis. Crit Care Med. 2009;37:2412–2420. doi: 10.1097/CCM.0b013e3181a385d3.
    1. Ni Chonghaile M, Higgins B, Laffey JG. Permissive hypercapnia: role in protective lung ventilatory strategies. Curr Opin Crit Care. 2005;11:56–62. doi: 10.1097/00075198-200502000-00009.
    1. Apostolakis EE, Koletsis EN, Baikoussis NG, Siminelakis SN, Papadopoulos GS. Strategies to prevent intraoperative lung injury during cardiopulmonary bypass. J Cardiothorac Surg. 2010;5:1. doi: 10.1186/1749-8090-5-1.
    1. Ng CS, Wan S, Yim AP, Arifi AA. Pulmonary dysfunction after cardiac surgery. Chest. 2002;121:1269–1277. doi: 10.1378/chest.121.4.1269.
    1. Zupancich E, Paparella D, Turani F, et al. Mechanical ventilation affects inflammatory mediators in patients undergoing cardiopulmonary bypass for cardiac surgery: a randomized clinical trial. J Thorac Cardiovasc Surg. 2005;130:378–383. doi: 10.1016/j.jtcvs.2004.11.061.
    1. Fujinaga T, Nakamura T, Fukuse T, et al. Isoflurane inhalation after circulatory arrest protects against warm ischemia reperfusion injury of the lungs. Transplantation. 2006;82:1168–1174. doi: 10.1097/01.tp.0000237207.73439.2e.
    1. Reutershan J, Chang D, Hayes JK, Ley K. Protective effects of isoflurane pretreatment in endotoxin-induced lung injury. Anesthesiology. 2006;104:511–517. doi: 10.1097/00000542-200603000-00019.
    1. Voigtsberger S, Lachmann RA, Leutert AC, et al. Sevoflurane ameliorates gas exchange and attenuates lung damage in experimental lipopolysaccharide-induced lung injury. Anesthesiology. 2009;111:1238–1248. doi: 10.1097/ALN.0b013e3181bdf857.
    1. De Conno E, Steurer MP, Wittlinger M, et al. Anesthetic-induced improvement of the inflammatory response to one-lung ventilation. Anesthesiology. 2009;110:1316–1326. doi: 10.1097/ALN.0b013e3181a10731.
    1. Schilling T, Kozian A, Kretzschmar M, et al. Effects of propofol and desflurane anaesthesia on the alveolar inflammatory response to one-lung ventilation. Br J Anaesth. 2007;99:368–375. doi: 10.1093/bja/aem184.
    1. Joyce JC, Baker AB, Kennedy RR. Gas uptake from an unventilated area of lung: computer model of absorption atelectasis. J Appl Physiol. 1993;74:1107–1116.
    1. Ko R, McCrae K, Darling G, et al. The use of air in the inspired gas mixture during two-lung ventilation delays lung collapse during one-lung ventilation. Anesth Analg. 2009;108:1092–1096. doi: 10.1213/ane.0b013e318195415f.
    1. Kang LJ, Park W, Pack IS, et al. Inhaled nitric oxide attenuates acute lung injury via inhibition of nuclear factor-ĸB and inflammation. J Appl Physiol. 2002;92:795–801.
    1. Adhikari NK, Burns KEA, Friedrich JO, et al. Effect of nitric oxide on oxygenation and mortality in acute lung injury: systematic review and meta-analysis. Br Med J. 2007;334:757–765. doi: 10.1136/.
    1. McCrae K. Pulmonary transplantation. Curr Opin Anaesth. 2000;13:53–59. doi: 10.1097/00001503-200002000-00009.
    1. Blumenthal S, Borgeat A, Pasch T, et al. Ropivacaine decreases inflammation in experimental endotoxin-induced lung injury. Anesthesiology. 2006;104:961–969. doi: 10.1097/00000542-200605000-00012.
    1. Yang C-H, Tsai P-S, Wang T-Y, Huang C-J. Dexmedetomidine–ketamine combination mitigates acute lung injury in haemorrhagic shock rats. Resuscitation. 2009;80:1204–1210. doi: 10.1016/j.resuscitation.2009.06.017.
    1. The Cardiothoracic Surgery Network website Available from.
    1. Hager DN, Krishnan JA, Hayden DL, Brower RG, ARDS Clinical Trials Network Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005;10:1241–1245. doi: 10.1164/rccm.200501-048CP.
    1. Frank JA, Gutierrez JA, Jones KD, Allen L, Dobbs L, Matthay MA. Low tidal volume reduces epithelial and endothelial injury in acid-injured rat lungs. Am J Respir Crit Care Med. 2002;165:242–249.
    1. Iglesias M, Jungebluth P, Petit C, et al. Extracorporeal lung membrane provides better lung protection than conventional treatment for severe postpneumonectomy noncardiogenic acute respiratory distress syndrome. J Thorac Cardiovasc Surg. 2008;6:1362–1371.
    1. Mallick A, Elliot S, McKinlay J, Bodenham A. Extracorporeal carbon dioxide removal using the Novalung in a patient with intracranial bleeding. Anaesthesia. 2007;62:72–74. doi: 10.1111/j.1365-2044.2006.04863.x.
    1. McKinlay J, Chapman G, Elliot S, Mallick A. Pre-emptive Novalung-assisted carbon dioxide removal in a patient with chest, head and abdominal injury. Anaesthesia. 2008;63:767–770. doi: 10.1111/j.1365-2044.2008.05484.x.
    1. Hammell C, Forrest M, Barrett P. Clinical experience with a pumpless extracorporeal lung assist device. Anaesthesia. 2008;63:1241–1244. doi: 10.1111/j.1365-2044.2008.05582.x.
    1. Elliot SC, Paramasivam K, Oram J, Bodenham AR, Howell SJ, Mallick A. Pumpless extracorporeal carbon dioxide removal for life-threatening asthma. Crit Care Med. 2007;35:945–948. doi: 10.1097/01.CCM.0000257462.04514.15.
    1. Liu LL, Aldrich JM, Shimabukuro DW, et al. Rescue therapies for acute hypoxemic respiratory failure. Anesth Analg. 2010;111:693–702. doi: 10.1213/ANE.0b013e3181e9c356.
    1. Bollen CW, van Well GT, Sherry T, et al. High frequency oscillatory ventilation compared with conventional ventilation in adult respiratory distress syndrome: a randomized controlled trial. Crit Care. 2005;9:R430–R439. doi: 10.1186/cc3737.
    1. Derdak S, Mehta S, Stewart TE, et al. High-frequency oscillatory ventilation in patients with acute respiratory syndrome: a randomized, controlled trial. Am J Respir Crit Care Med. 2002;166:801–808. doi: 10.1164/rccm.2108052.
    1. Papazian L, Gainner M, Marin V, et al. Comparison of prone positioning and high-frequency oscillatory ventilation in patients with acute respiratory distress syndrome. Crit Care Med. 2005;33:2162–2171. doi: 10.1097/01.CCM.0000181298.05474.2B.
    1. Faller S, Ryter SW, Choi AMK, Loop T, Schmodt R, Hoetsel A. Inhaled hydrogen sulfide protects against ventilator-induced lung injury. Anesthesiology. 2010;113:104–115. doi: 10.1097/ALN.0b013e3181de7107.
    1. Waerhaug K, Kuzkov VV, Kuklin VN, et al. Inhaled aerosolised recombinant human activated protein C ameliorates endotoxin-induced lung injury in anesthetised sheep. Crit Care. 2009;13:R51. doi: 10.1186/cc7777.
    1. Matthay M. β-Adrenergic agonist therapy as a potential treatment for acute lung injury. Am J Respir Crit Care Med. 2006;173:254–255. doi: 10.1164/rccm.rccm2511003.
    1. Perkins GD, McAuley DF, Thickett DR, Gao F. The β-agonist lung injury trial. Am J Respir Crit Care Med. 2006;173:281–287. doi: 10.1164/rccm.200508-1302OC.
    1. The Acute Respiratory Distress Syndrome Network Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Beck-Schimmer B, Schimmer RC. Perioperative tidal volume and intraoperative open lung strategy in healthy lungs: where are we going? Best Pract Res Clin Anaesthesiol. 2010;24:199–210. doi: 10.1016/j.bpa.2010.02.005.
    1. Carvalho EMF, Gabriel EA, Salerno TA. Pulmonary protection during cardiac surgery: systematic literature review. Asian Cardiovasc Thorac Ann. 2008;16:503–507.
    1. Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur J Cardiothorac Surg. 2002;21:232–244.

Source: PubMed

3
Iratkozz fel