A pragmatic multi-center trial of goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery

Luiz Marcelo Sá Malbouisson, João Manoel Silva Jr, Maria José Carvalho Carmona, Marcel Rezende Lopes, Murilo Santucci Assunção, Jorge Luís Dos Santos Valiatti, Claudia Marques Simões, José Otavio Costa Auler Jr, Luiz Marcelo Sá Malbouisson, João Manoel Silva Jr, Maria José Carvalho Carmona, Marcel Rezende Lopes, Murilo Santucci Assunção, Jorge Luís Dos Santos Valiatti, Claudia Marques Simões, José Otavio Costa Auler Jr

Abstract

Background: Intraoperative fluid therapy guided by mechanical ventilation-induced pulse-pressure variation (PPV) may improve outcomes after major surgery. We tested this hypothesis in a multi-center study.

Methods: The patients were included in two periods: a first control period (control group; n = 147) in which intraoperative fluids were given according to clinical judgment. After a training period, intraoperative fluid management was titrated to maintain PPV < 10% in 109 surgical patients (PPV group). We performed 1:1 propensity score matching to ensure the groups were comparable with regard to age, weight, duration of surgery, and type of operation. The primary endpoint was postoperative hospital length of stay.

Results: After matching, 84 patients remained in each group. Baseline characteristics, surgical procedure duration and physiological parameters evaluated at the start of surgery were similar between the groups. The volume of crystalloids (4500 mL [3200-6500 mL] versus 5000 mL [3750-8862 mL]; P = 0.01), the number of blood units infused during the surgery (1.7 U [0.9-2.0 U] versus 2.0 U [1.7-2.6 U]; P = 0.01), the fraction of patients transfused (13.1% versus 32.1%; P = 0.003) and the number of patients receiving mechanical ventilation at 24 h (3.2% versus 9.7%; P = 0.027) were smaller postoperatively in PPV group. Intraoperative PPV-based improved the composite outcome of postoperative complications OR 0.59 [95% CI 0.35-0.99] and reduced the postoperative hospital length of stay (8 days [6-14 days] versus 11 days [7-18 days]; P = 0.01).

Conclusions: In high-risk surgeries, PPV-directed volume loading improved postoperative outcomes and decreased the postoperative hospital length of stay.

Trial registration: ClinicalTrials.gov Identifier; retrospectively registered- NCT03128190.

Keywords: Goal-directed fluid therapy; Hemodynamics; High-risk surgery; Postoperative complications; Pulse-pressure variation.

Figures

Fig. 1
Fig. 1
Patient flow throughout the study
Fig. 2
Fig. 2
Odds ratios and 95% confidence intervals for clinical outcomes
Fig. 3
Fig. 3
Postoperative length of stay curves of the propensity matched control group (solid line) and of the propensity matched intervention group (dotted line) plotted using the Kaplan-Meyer method

References

    1. Pearse RM, Harrison DA, James P, Watson D, Hinds C, Rhodes A, Grounds RM, Bennett ED. Identification and characterisation of the high-risk surgical population in the United Kingdom. Crit Care. 2006;10(3):R81. doi: 10.1186/cc4928.
    1. Lobo SM, Rezende E, Knibel MF, Silva NB, Paramo JA, Nacul FE, Mendes CL, Assuncao M, Costa RC, Grion CC, et al. Early determinants of death due to multiple organ failure after noncardiac surgery in high-risk patients. Anesth Analg. 2011;112(4):877–883. doi: 10.1213/ANE.0b013e3181e2bf8e.
    1. Jhanji S, Thomas B, Ely A, Watson D, Hinds CJ, Pearse RM. Mortality and utilisation of critical care resources amongst high-risk surgical patients in a large NHS trust. Anaesthesia. 2008;63(7):695–700. doi: 10.1111/j.1365-2044.2008.05560.x.
    1. Lobo SM, Salgado PF, Castillo VG, Borim AA, Polachini CA, Palchetti JC, Brienzi SL, de Oliveira GG. Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med. 2000;28(10):3396–3404. doi: 10.1097/00003246-200010000-00003.
    1. Sinclair S, James S, Singer M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ. 1997;315(7113):909–912. doi: 10.1136/bmj.315.7113.909.
    1. Lobo SM, de Oliveira NE. Clinical review: What are the best hemodynamic targets for noncardiac surgical patients? Crit Care. 2013;17(2):210. doi: 10.1186/cc11861.
    1. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445] Crit Care. 2005;9(6):R687–R693. doi: 10.1186/cc3887.
    1. Yang X, Du B. Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit Care. 2014;18(6):650. doi: 10.1186/s13054-014-0650-6.
    1. Silva JM, Jr, de Oliveira AM, Nogueira FA, Vianna PM, Pereira Filho MC, Dias LF, Maia VP, Neucamp CD, Amendola CP, Carmona MJ, et al. The effect of excess fluid balance on the mortality rate of surgical patients: a multicenter prospective study. Crit Care. 2013;17(6):R288. doi: 10.1186/cc13151.
    1. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121(6):2000–2008. doi: 10.1378/chest.121.6.2000.
    1. Secher NH. When is enough enough? Individualized goal-directed fluid therapy for surgery. J Clin Monit Comput. 2013;27(3):223–224. doi: 10.1007/s10877-013-9462-5.
    1. Scheeren TW, Wiesenack C, Gerlach H, Marx G. Goal-directed intraoperative fluid therapy guided by stroke volume and its variation in high-risk surgical patients: a prospective randomized multicentre study. J Clin Monit Comput. 2013;27(3):225–233. doi: 10.1007/s10877-013-9461-6.
    1. Lopes MR, Oliveira MA, Pereira VO, Lemos IP, Auler JO, Jr, Michard F. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care. 2007;11(5):R100. doi: 10.1186/cc6117.
    1. Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103(2):419–428. doi: 10.1097/00000542-200508000-00026.
    1. Auler JO, Jr, Galas F, Hajjar L, Santos L, Carvalho T, Michard F. Online monitoring of pulse pressure variation to guide fluid therapy after cardiac surgery. Anesth Analg. 2008;106(4):1201–1206. doi: 10.1213/01.ane.0000287664.03547.c6.
    1. Shoemaker WC. Physiologic monitoring and therapy of high risk surgical patients. Prog Clin Biol Res. 1987;236B:103–107.
    1. Cannesson M, Le Manach Y, Hofer CK, Goarin JP, Lehot JJ, Vallet B, Tavernier B. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology. 2011;115(2):231–241. doi: 10.1097/ALN.0b013e318225b80a.
    1. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med. 2009;37(9):2642–2647. doi: 10.1097/CCM.0b013e3181a590da.
    1. Benes J, Giglio M, Brienza N, Michard F. The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Crit Care. 2014;18(5):584. doi: 10.1186/s13054-014-0584-z.
    1. Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, Dwane P, Glass PS. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97(4):820–826. doi: 10.1097/00000542-200210000-00012.
    1. Donati A, Loggi S, Preiser JC, Orsetti G, Munch C, Gabbanelli V, Pelaia P, Pietropaoli P. Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest. 2007;132(6):1817–1824. doi: 10.1378/chest.07-0621.
    1. Rhodes A, Cecconi M, Hamilton M, Poloniecki J, Woods J, Boyd O, Bennett D, Grounds RM. Goal-directed therapy in high-risk surgical patients: a 15-year follow-up study. Intensive Care Med. 2010;36(8):1327–1332. doi: 10.1007/s00134-010-1869-6.
    1. Kern JW, Shoemaker WC. Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med. 2002;30(8):1686–1692. doi: 10.1097/00003246-200208000-00002.
    1. Grocott MP, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, Rowan K. Optimisation Systematic Review Steering G: Perioperative increase in global blood flow to explicit defined goals and outcomes following surgery. Cochrane Database Syst Rev. 2012;11:CD004082.
    1. Pearse RM, Harrison DA, MacDonald N, Gillies MA, Blunt M, Ackland G, Grocott MP, Ahern A, Griggs K, Scott R, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311(21):2181–2190. doi: 10.1001/jama.2014.5305.
    1. Doherty M, Buggy DJ. Intraoperative fluids: how much is too much? Br J Anaesth. 2012;109(1):69–79. doi: 10.1093/bja/aes171.
    1. Bundgaard-Nielsen M, Jorgensen CC, Secher NH, Kehlet H. Functional intravascular volume deficit in patients before surgery. Acta Anaesthesiol Scand. 2010;54(4):464–469. doi: 10.1111/j.1399-6576.2009.02175.x.
    1. Takala J. Highs and lows in high-risk surgery: the controversy of goal-directed haemodynamic management. Crit Care. 2005;9(6):642–644. doi: 10.1186/cc3929.
    1. Takala J, Ruokonen E, Tenhunen JJ, Parviainen I, Jakob SM. Early non-invasive cardiac output monitoring in hemodynamically unstable intensive care patients: a multi-center randomized controlled trial. Crit Care. 2011;15(3):R148. doi: 10.1186/cc10273.
    1. Benes J, Chytra I, Altmann P, Hluchy M, Kasal E, Svitak R, Pradl R, Stepan M. Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care. 2010;14(3):R118. doi: 10.1186/cc9070.
    1. Nisanevich V, Felsenstein I, Almogy G, Weissman C, Einav S, Matot I. Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology. 2005;103(1):25–32. doi: 10.1097/00000542-200507000-00008.
    1. Futier E, Constantin JM, Petit A, Chanques G, Kwiatkowski F, Flamein R, Slim K, Sapin V, Jaber S, Bazin JE. Conservative vs restrictive individualized goal-directed fluid replacement strategy in major abdominal surgery: A prospective randomized trial. Arch Surg. 2010;145(12):1193–1200. doi: 10.1001/archsurg.2010.275.
    1. Holte K, Foss NB, Andersen J, Valentiner L, Lund C, Bie P, Kehlet H. Liberal or restrictive fluid administration in fast-track colonic surgery: a randomized, double-blind study. Br J Anaesth. 2007;99(4):500–508. doi: 10.1093/bja/aem211.
    1. Suzuki S, Woinarski NC, Lipcsey M, Candal CL, Schneider AG, Glassford NJ, Eastwood GM, Bellomo R. Pulse pressure variation-guided fluid therapy after cardiac surgery: a pilot before-and-after trial. J Crit Care. 2014;29(6):992–996. doi: 10.1016/j.jcrc.2014.07.032.
    1. Michard F, Cannesson M, Vallet B. Perioperative hemodynamic therapy: quality improvement programs should help to resolve our uncertainty. Crit Care. 2011;15(5):445. doi: 10.1186/cc10336.
    1. Jammer I, Wickboldt N, Sander M, Smith A, Schultz MJ, Pelosi P, Leva B, Rhodes A, Hoeft A, Walder B, et al. Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions: a statement from the ESA-ESICM joint taskforce on perioperative outcome measures. Eur J Anaesthesiol. 2015;32(2):88–105. doi: 10.1097/EJA.0000000000000118.

Source: PubMed

3
Iratkozz fel