Growing-Related Changes in Arterial Properties of Healthy Children, Adolescents, and Young Adults Nonexposed to Cardiovascular Risk Factors: Analysis of Gender-Related Differences

S Curcio, V García-Espinosa, M Arana, I Farro, P Chiesa, G Giachetto, Y Zócalo, D Bia, S Curcio, V García-Espinosa, M Arana, I Farro, P Chiesa, G Giachetto, Y Zócalo, D Bia

Abstract

The aims of our work were to determine normal aging rates for structural and functional arterial parameters in healthy children, adolescents, and young adults and to identify gender-related differences in these aging rates. Methods. 161 subjects (mean: 15 years (range: 4-28 years), 69 females) were studied. Subjects included had no congenital or chronic diseases, nor had they been previously exposed to traditional cardiovascular risk factors. Arterial parameters assessed were (1) central blood pressure (BP) and aortic pulse wave analysis, (2) arterial local (pressure-strain elastic modulus) and regional (pulse wave velocity, PWV) stiffness, and (3) arterial diameters and carotid intima-media thickness (CIMT). Simple linear regression models (age as the independent variable) were obtained for all the parameters and the resulting rates of change were compared between genders. Results. No gender-related differences were found in mean values of arterial structural and functional parameters in prepubertal ages (4-8 years), but they started to appear at ~15 years. Boys showed a greater rate of change for central systolic BP, central pulse pressure, CIMT, and carotid-femoral PWV. Conclusion. Gender-related differences in arterial characteristics of adults can be explained on the basis of different growing-related patterns between boys and girls, with no existing differences in prepubertal ages.

Figures

Figure 1
Figure 1
Regression plots for structural and functional arterial parameters. BP, blood pressure; AIx@75, augmentation index; IMT, intima-media thickness; PWV, pulse wave velocity.

References

    1. Nichols W. W., O'Rourke M. F., Vlachlopoulos C. Mcdonald's Blood Flow in Arteries. London, UK: Hodder Arnold; 2011.
    1. Nilsson P. M., Boutouyrie P., Cunha P., et al. Early vascular ageing in translation: from laboratory investigations to clinical applications in cardiovascular prevention. Journal of Hypertension. 2013;31(8):1517–1526. doi: 10.1097/hjh.0b013e328361e4bd.
    1. Van der Heijden-Spek J. J., Staessen J. A., Fagard R. H., Hoeks A. P., Boudier H. A., van Bortel L. M. Effect of age on brachial artery wall properties differs from the aorta and is gender dependent: a population study. Hypertension. 2000;35(2):637–642.
    1. Cameron J. D., Bulpitt C. J., Pinto E. S., Rajkumar C. The aging of elastic and muscular arteries: a comparison of diabetic and nondiabetic subjects. Diabetes Care. 2003;26(7):2133–2138. doi: 10.2337/diacare.26.7.2133.
    1. Nilsson P. M., Lurbe E., Laurent S. The early life origins of vascular ageing and cardiovascular risk: the EVA syndrome. Journal of Hypertension. 2008;26(6):1049–1057. doi: 10.1097/hjh.0b013e3282f82c3e.
    1. Ridha M., Nourse S. E., Selamet Tierney E. S. Pediatric interventions using noninvasive vascular health indices. Hypertension. 2015;65(5):949–955. doi: 10.1161/hypertensionaha.114.04926.
    1. Meyer A. A., Kundt G., Lenschow U., Schuff-Werner P., Kienast W. Improvement of early vascular changes and cardiovascular risk factors in obese children after a six-month exercise program. Journal of the American College of Cardiology. 2006;48(9):1865–1870. doi: 10.1016/j.jacc.2006.07.035.
    1. Farpour-Lambert N. J., Aggoun Y., Marchand L. M., Martin X. E., Herrmann F. R., Beghetti M. Physical activity reduces systemic blood pressure and improves early markers of atherosclerosis in pre-pubertal obese children. Journal of the American College of Cardiology. 2009;54(25):2396–2406. doi: 10.1016/j.jacc.2009.08.030.
    1. Delles C., Dominiczak A. F., Kingdom U., et al. Hypertension management in the 21st century: major advances and achievements. Medicographia. 2012;34(1):11–16.
    1. Vermeersch S. J., Rietzschel E. R., De Buyzere M. L., et al. Age and gender related patterns in carotid-femoral PWV and carotid and femoral stiffness in a large healthy, middle-aged population. Journal of Hypertension. 2008;26(7):1411–1419. doi: 10.1097/hjh.0b013e3282ffac00.
    1. Cunha P. G., Cotter J., Oliveira P., et al. Pulse wave velocity distribution in a cohort study. Journal of Hypertension. 2015;33(7):1438–1445. doi: 10.1097/hjh.0000000000000565.
    1. Yao F., Liu Y., Liu D., et al. Sex differences between vascular endothelial function and carotid intima-media thickness by Framingham Risk Score. Journal of Ultrasound in Medicine. 2014;33(2):281–286. doi: 10.7863/ultra.33.2.281.
    1. Juonala M., Kähönen M., Laitinen T., et al. Effect of age and sex on carotid intima-media thickness, elasticity and brachial endothelial function in healthy adults: the Cardiovascular Risk in Young Finns study. European Heart Journal. 2008;29(9):1198–1206. doi: 10.1093/eurheartj/ehm556.
    1. Santana D. B., Zócalo Y. A., Ventura I. F., et al. Health informatics design for assisted diagnosis of subclinical atherosclerosis, structural, and functional arterial age calculus and patient-specific cardiovascular risk evaluation. IEEE Transactions on Information Technology in Biomedicine. 2012;16(5):943–951. doi: 10.1109/TITB.2012.2190990.
    1. Santana D. B., Zócalo Y. A., Armentano R. L. Integrated e-health approach based on vascular ultrasound and pulse wave analysis for asymptomatic atherosclerosis detection and cardiovascular risk stratification in the community. IEEE Transactions on Information Technology in Biomedicine. 2012;16(2):287–294. doi: 10.1109/TITB.2011.2169977.
    1. Reusz G. S., Cseprekal O., Temmar M., et al. Reference values of pulse wave velocity in healthy children and teenagers. Hypertension. 2010;56(2):217–224. doi: 10.1161/hypertensionaha.110.152686.
    1. Fischer D.-C., Schreiver C., Heimhalt M., Noerenberg A., Haffner D. Pediatric reference values of carotid-femoral pulse wave velocity determined with an oscillometric device. Journal of Hypertension. 2012;30(11):2159–2167. doi: 10.1097/hjh.0b013e3283582217.
    1. Elmenhorst J., Hulpke-Wette M., Barta C., Dalla Pozza R., Springer S., Oberhoffer R. Percentiles for central blood pressure and pulse wave velocity in children and adolescents recorded with an oscillometric device. Atherosclerosis. 2015;238(1):9–16. doi: 10.1016/j.atherosclerosis.2014.11.005.
    1. de Arriba Muñoz A., Domínguez Cajal M. M., Labarta Aizpún J. I., Domínguez Cunchillos M., Mayayo Dehesa E., Ferrández Longás Á. Índice íntima-media carotídeo; valores de normalidad desde los 4 años. Nutricion Hospitalaria. 2013;28(4):1171–1176. doi: 10.3305/nh.2013.28.4.6611.
    1. Doyon A., Kracht D., Bayazit A. K., et al. Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertension. 2013;62(3):550–556. doi: 10.1161/hypertensionaha.113.01297.
    1. Laurent S., Cockcroft J., Van Bortel L., et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. European Heart Journal. 2006;27(21):2588–2605. doi: 10.1093/eurheartj/ehl254.
    1. Van Bortel L. M., Laurent S., Boutouyrie P., et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. Journal of Hypertension. 2012;30(3):445–448. doi: 10.1097/hjh.0b013e32834fa8b0.
    1. Shirai K., Utino J., Otsuka K., Takata M. A novel blood pressure-independent arterial wall stiffness parameter; Cardio-Ankle Vascular Index (CAVI) Journal of Atherosclerosis and Thrombosis. 2006;13(2):101–107. doi: 10.5551/jat.13.101.
    1. Bia D., Zócalo Y., Farro I., et al. Integrated evaluation of age-related changes in structural and functional vascular parameters used to assess arterial aging, subclinical atherosclerosis, and cardiovascular risk in uruguayan adults: CUiiDARTE project. International Journal of Hypertension. 2011;2011:12. doi: 10.4061/2011/587303.587303
    1. Stein J. H., Korcarz C. E., Hurst R. T., et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the american society of echocardiography carotid intima-media thickness task force endorsed by the society for vascular. Journal of the American Society of Echocardiography. 2008;21(2):93–111. doi: 10.1016/j.echo.2007.11.011.
    1. Selamet Tierney E. S., Gauvreau K., Jaff M. R., et al. Carotid artery intima-media thickness measurements in the youth: reproducibility and technical considerations. Journal of the American Society of Echocardiography. 2015;28(3):309–316. doi: 10.1016/j.echo.2014.10.004.
    1. Chen C.-H., Nevo E., Fetics B., et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation. 1997;95(7):1827–1836. doi: 10.1161/01.cir.95.7.1827.
    1. Wilkinson I. B., MacCallum H., Flint L., Cockcroft J. R., Newby D. E., Webb D. J. The influence of heart rate on augmentation index and central arterial pressure in humans. Journal of Physiology. 2000;525(1):263–270. doi: 10.1111/j.1469-7793.2000.t01-1-00263.x.
    1. McEniery C. M., Yasmin, Hall I. R., Qasem A., Wilkinson I. B., Cockcroft J. R. Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity—the Anglo-Cardiff Collaborative Trial (ACCT) Journal of the American College of Cardiology. 2005;46(9):1753–1760. doi: 10.1016/j.jacc.2005.07.037.
    1. Hayward C. S., Kelly R. P. Gender-related differences in the central arterial pressure waveform. Journal of the American College of Cardiology. 1997;30(7):1863–1871. doi: 10.1016/S0735-1097(97)00378-1.
    1. Böhm B., Hartmann K., Buck M., Oberhoffer R. Sex differences of carotid intima-media thickness in healthy children and adolescents. Atherosclerosis. 2009;206(2):458–463. doi: 10.1016/j.atherosclerosis.2009.03.016.
    1. Ishizu T., Ishimitsu T., Yanagi H., et al. Effect of age on carotid arterial intima-media thickness in childhood. Heart and Vessels. 2004;19(4):189–195.
    1. Engelen L., Ferreira I., Stehouwer C. D., Boutouyrie P., Laurent S. Reference intervals for common carotid intima-medi thickness measured with echotracking: relation with risk factors. European Heart Journal. 2013;34(30):2368–2380. doi: 10.1093/eurheartj/ehs380.
    1. Hidvégi E. V., Illyés M., Benczúr B., et al. Reference values of aortic pulse wave velocity in a large healthy population aged between 3 and 18 years. Journal of Hypertension. 2012;30(12):2314–2321. doi: 10.1097/hjh.0b013e328359562c.
    1. Senzaki H., Akagi M., Hishi T., et al. Age-associated changes in arterial elastic properties in children. European Journal of Pediatrics. 2002;161(10):547–551. doi: 10.1007/s00431-002-1025-6.
    1. Staessen J. A., van der Heijden-Spek J. J., Safar M. E., et al. Menopause and the characteristics of the large arteries in a population study. Journal of Human Hypertension. 2001;15(8):511–518. doi: 10.1038/sj.jhh.1001226.
    1. Stoner L., Faulkner J., Westrupp N., Lambrick D. Sexual differences in central arterial wave reflection are evident in prepubescent children. Journal of Hypertension. 2015;33(2):304–307. doi: 10.1097/HJH.0000000000000399.
    1. Ayer J. G., Harmer J. A., Marks G. B., Avolio A., Celermajer D. S. Central arterial pulse wave augmentation is greater in girls than boys, independent of height. Journal of Hypertension. 2010;28(2):306–313. doi: 10.1097/HJH.0b013e3283332286.
    1. Stein J. H., Douglas P. S., Srinivasan S. R., et al. Distribution and cross-sectional age-related increases of carotid artery intima-media thickness in young adults: the Bogalusa Heart study. Stroke. 2004;35(12):2782–2787. doi: 10.1161/01.str.0000147719.27237.14.
    1. Santana D. B., Barra J. G., Grignola J. C., Ginés F. F., Armentano R. L. Pulmonary artery smooth muscle activation attenuates arterial dysfunction during acute pulmonary hypertension. Journal of Applied Physiology. 2005;98(2):605–613. doi: 10.1152/japplphysiol.00361.2004.
    1. Charakida M., Jones A., Falaschetti E., et al. Childhood obesity and vascular phenotypes: a population study. Journal of the American College of Cardiology. 2012;60(25):2643–2650. doi: 10.1016/j.jacc.2012.08.1017.
    1. Cote A. T., Harris K. C., Panagiotopoulos C., Sandor G. G. S., Devlin A. M. Childhood obesity and cardiovascular dysfunction. Journal of the American College of Cardiology. 2013;62(15):1309–1319. doi: 10.1016/j.jacc.2013.07.042.
    1. Freedman D. S., Patel D. A., Srinivasan S. R., et al. The contribution of childhood obesity to adult carotid intima-media thickness: the Bogalusa Heart Study. International Journal of Obesity. 2008;32(5):749–756. doi: 10.1038/sj.ijo.0803798.
    1. Tam C. S., De Zegher F., Garnett S. P., Baur L. A., Cowell C. T. Opposing influences of prenatal and postnatal growth on the timing of menarche. The Journal of Clinical Endocrinology & Metabolism. 2006;91(11):4369–4373. doi: 10.1210/jc.2006-0953.
    1. Van Bortel L. M., Balkestein E. J., van der Heijden-Spek J. J., et al. Non-invasive assessment of local arterial pulse pressure: comparison of applanation tonometry and echo-tracking. Journal of Hypertension. 2001;19(6):1037–1044. doi: 10.1097/00004872-200106000-00007.
    1. Picone D. S., Climie R. E., Ahuja K. D., Keske M. A., Sharman J. E. Brachial-to-radial SBP amplification: implications of age and estimated central blood pressure from radial tonometry. Journal of Hypertension. 2015;33(9):1876–1883. doi: 10.1097/hjh.0000000000000637.

Source: PubMed

3
Iratkozz fel