Vitamin E as an Antioxidant in Female Reproductive Health

Siti Syairah Mohd Mutalip, Sharaniza Ab-Rahim, Mohd Hamim Rajikin, Siti Syairah Mohd Mutalip, Sharaniza Ab-Rahim, Mohd Hamim Rajikin

Abstract

Vitamin E was first discovered in 1922 as a substance necessary for reproduction. Following this discovery, vitamin E was extensively studied, and it has become widely known as a powerful lipid-soluble antioxidant. There has been increasing interest in the role of vitamin E as an antioxidant, as it has been discovered to lower body cholesterol levels and act as an anticancer agent. Numerous studies have reported that vitamin E exhibits anti-proliferative, anti-survival, pro-apoptotic, and anti-angiogenic effects in cancer, as well as anti-inflammatory activities. There are various reports on the benefits of vitamin E on health in general. However, despite it being initially discovered as a vitamin necessary for reproduction, to date, studies relating to its effects in this area are lacking. Hence, this paper was written with the intention of providing a review of the known roles of vitamin E as an antioxidant in female reproductive health.

Keywords: antioxidant; reproduction; tocopherol; tocotrienol; vitamin E.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Structure differences between tocopherols (TOCs) and tocotrienols (TCTs). TOCs have saturated side chains, while TCTs have unsaturated side chains. The latter are shown by the presence of three double bonds in TCTs (circled) [14].

References

    1. Evans H.M., Bishop K.S. On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science. 1922;56:650–651. doi: 10.1126/science.56.1458.650.
    1. Tappel A.L. Vitamin E as the biological lipid antioxidant. Vitam. Horm. 1962;20:493–510.
    1. Burton G.W., Ingold K.U. Vitamin E application of the principles of physical organic chemistry to the exploration of its structure and function. Acc. Chem. Res. 1986;19:194–201. doi: 10.1021/ar00127a001.
    1. Esterbauer H., Dieber-Rotheneder M., Striegl G., Waeg G. Role of vitamin E in preventing the oxidation of low density lipoprotein. Am. J. Clin. Nutr. 1991;53:314S–321S. doi: 10.1093/ajcn/53.1.314S.
    1. Sheppard A.J., Pennington J.A.T., Weihrauch J.L. Analysis and distribution of vitamin E in vegetable oils and foods. In: Packer L., Fuchs J., editors. Vitamin E in Health and Disease. Marcel Dekker; New York, NY, USA: 1993. pp. 9–31.
    1. Ramaswamy K., Subash C.G., Ji H.K., Bharat B.A. Tocotrienols fight cancer by targeting multiple cell signaling pathways. Genes Nutr. 2012;7:43–52. doi: 10.1007/s12263-011-0220-3.
    1. Kobayashi H., Kanno C., Yamauchi K., Tsugo T. Identification of alpha-, beta-, gamma-, and delta-tocopherols and their contents in human milk. Biochim. Biophys. Acta. 1975;380:282–290.
    1. Nehdi I., Omri S., Khalil M.I., Al-Resayes S.I. Characteristics and chemical composition of date palm (Phoenix canariensis) seeds and seed oil. Ind. Crops Prod. 2010;32:360–365. doi: 10.1016/j.indcrop.2010.05.016.
    1. Tan B. Vitamin E: Tocotrienols—The Science behind Tocotrienols. [(accessed on 14 August 2017)]; Available online: .
    1. Rimbach G., Jennifer M., Patricia H., John K.L. Gene-Regulatory Activity of α-Tocopherol. Molecules. 2010;15:1746–1761. doi: 10.3390/molecules15031746.
    1. IUPAC-IUB Joint Commission on Biochemical Nomenclature Nomenclature of tocopherols and related compounds. (Recommendations 1981) Eur. J. Biochem. 1982;123:473–475.
    1. Rimbach G., Minihane A.M., Majewicz J., Fischer A., Pallauf J., Virgli F., Weinberg P.D. Regulation of cell signalling by vitamin E. Proc. Nutr. Soc. 2002;61:415–425. doi: 10.1079/PNS2002183.
    1. Pignitter M., Stolze K., Gartner S., Dumhart B., Stoll C., Steiger G., Kraemer K., Somoza V. Cold fluorescent light as major inducer of lipid oxidation in soybean oil stored at household conditions for eight weeks. J. Agric. Food Chem. 2014;62:2297–2305. doi: 10.1021/jf405736j.
    1. The Structure of Vitamin, E. [(accessed on 23 January 2018)]; Available online: .
    1. Wigle D.T., Arbuckle T.E., Turner M.C., Bérubé A., Yang Q., Liu S., Krewski D. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J. Toxicol. Environ. Health B Crit. Rev. 2008;11:373–517. doi: 10.1080/10937400801921320.
    1. Rider C.V., Furr J.R., Wilson V.S., Gray L.E., Jr. Cumulative effects of in utero administration of mixtures of reproductive toxicants that disrupt common target tissues via diverse mechanisms of toxicity. J. Androl. 2010;33:443–462. doi: 10.1111/j.1365-2605.2009.01049.x.
    1. Al-Gubory K.H. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reprod. Biomed. Online. 2014;29:17–31. doi: 10.1016/j.rbmo.2014.03.002.
    1. Kortenkamp A. Ten years of mixing cocktails: A review of combination effects of endocrine-disrupting chemicals. Environ. Health Perspect. 2007;115(Suppl. 1):98–105. doi: 10.1289/ehp.9357.
    1. Luo Z.C., Liu J.M., Fraser W.D. Large prospective birth cohort studies on environmental contaminants and child health—Goals, challenges, limitations and needs. Med. Hypotheses. 2010;74:318–324. doi: 10.1016/j.mehy.2009.08.044.
    1. Ruder E.H., Hartman T.J., Blumberg J., Goldman M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update. 2008;14:345–357. doi: 10.1093/humupd/dmn011.
    1. Wells P.G., McCallum G.P., Chen C.S., Henderson J.T., Lee C.J., Perstin J., Preston T.J., Wiley M.J., Wong A.W. Oxidative stress in developmental origins of disease: Teratogenesis, neurodevelopmental deficits, and cancer. Toxicol. Sci. 2009;108:4–18. doi: 10.1093/toxsci/kfn263.
    1. Al-Gubory K.H., Fowler P.A., Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int. J. Biochem. Cell Biol. 2010;42:1634–1650. doi: 10.1016/j.biocel.2010.06.001.
    1. Agarwal A., Aponte-Mellado A., Premkumar B.J., Shaman A., Gupta S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012;10:49. doi: 10.1186/1477-7827-10-49.
    1. Anderson K., Nisenblat V., Norman R. Lifestyle factors in people seeking infertility treatment—A review. Aust. N. Z. J. Obstet. Gynaecol. 2010;50:8–20. doi: 10.1111/j.1479-828X.2009.01119.x.
    1. Sharma R., Biedenharn K.R., Fedor J.M., Agarwal A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol. 2013;11:66. doi: 10.1186/1477-7827-11-66.
    1. Kovacic P., Somanathan R. Mechanism of teratogenesis: Electron transfer, reactive oxygen species, and antioxidants. Birth Defects Res. C Embryo Today. 2006;78:308–325. doi: 10.1002/bdrc.20081.
    1. Rasch V. Cigarette, alcohol, and caffeine consumption: Risk factors for spontaneous abortion. Acta Obstet. Gynecol. Scand. 2003;82:182–188. doi: 10.1034/j.1600-0412.2003.00078.x.
    1. Weng X., Odouli R., Li D.K. Maternal caffeine consumption during pregnancy and the risk of miscarriage: A prospective cohort study. Am. J. Obstet. Gynecol. 2008;198:279.e1–279.e8. doi: 10.1016/j.ajog.2007.10.803.
    1. Barua S., Junaid M.A. Lifestyle, pregnancy and epigenetic effects. Epigenomics. 2015;7:85–102. doi: 10.2217/epi.14.71.
    1. Dechanet C., Anahory T., Mathieu Daude J.C., Quantin X., Reyftmann L., Hamamah S., Hedon B., Dechaud H. Effects of cigarette smoking on reproduction. Hum. Reprod. Update. 2011;17:76–95. doi: 10.1093/humupd/dmq033.
    1. Dembele K., Yao X.H., Chen L., Nyomba B.L. Intrauterine ethanol exposure results in hypothalamic oxidative stress and neuroendocrine alterations in adult rat offspring. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;291:R796–R802. doi: 10.1152/ajpregu.00633.2005.
    1. Wentzel P., Eriksson U.J. Ethanol-induced fetal dysmorphogenesis in the mouse is diminished by high antioxidative capacity of the mother. Toxicol. Sci. 2006;92:416–422. doi: 10.1093/toxsci/kfl024.
    1. Wentzel P., Rydberg U., Eriksson U.J. Antioxidative treatment diminishes ethanol-induced congenital malformations in the rat. Alcohol. Clin. Exp. Res. 2006;30:1752–1760. doi: 10.1111/j.1530-0277.2006.00208.x.
    1. Van Gelder M.M., van Rooij I.A., Miller R.K., Zielhuis G.A., de Jong-van den Berg L.T., Roeleveld N. Teratogenic mechanisms of medical drugs. Hum. Reprod. Update. 2010;16:378–394. doi: 10.1093/humupd/dmp052.
    1. Deavall D.G., Martin E.A., Horner J.M., Roberts R. Drug-induced oxidative stress and toxicity. J. Toxicol. 2012 doi: 10.1155/2012/645460.
    1. Liu L., Wells P.G. In vivo phenytoin-initiated oxidative damage to proteins and lipids in murine maternal hepatic and embryonic tissue organelles: Potential molecular targets of chemical teratogenesis. Toxicol. Appl. Pharmacol. 1994;125:247–255. doi: 10.1006/taap.1994.1070.
    1. Hansen J.M., Harris C. A novel hypothesis for thalidomide-induced limb teratogenesis: Redox misregulation of the NF-kappaB pathway. Antioxid. Redox Signal. 2004;6:1–14. doi: 10.1089/152308604771978291.
    1. Defoort E.N., Kim P.M., Winn L.M. Valproic acid increases conservative homologous recombination frequency and reactive oxygen species formation: A potential mechanism for valproic acid-induced neural tube defects. Mol. Pharmacol. 2006;69:1304–1310. doi: 10.1124/mol.105.017855.
    1. Danielsson B.R., Danielsson C., Nilsson M.F. Embryonic cardiac arrhythmia and generation of reactive oxygen species: Common teratogenic mechanism for IKr blocking drugs. Reprod. Toxicol. 2007;24:42–56. doi: 10.1016/j.reprotox.2007.04.005.
    1. Borgerding M., Klus H. Analysis of complex mixtures—Cigarette smoke. Exp. Toxicol. Pathol. 2005;57:43–73. doi: 10.1016/j.etp.2005.05.010.
    1. Feltes B.C., de Faria Poloni J., Notari D.L., Bonatto D. Toxicological effects of the different substances in tobacco smoke on human embryonic development by a systems chemo-biology approach. PLoS ONE. 2013;8:e61743. doi: 10.1371/journal.pone.0061743.
    1. George L., Granath F., Johansson A.L., Anneren G., Cnattingius S. Environmental tobacco smoke and risk of spontaneous abortion. Epidemiology. 2006;17:500–505. doi: 10.1097/01.ede.0000229984.53726.33.
    1. Ananth C.V., Smulian J.C., Vintzileos A.M. Incidence of placental abruption in relation to cigarette smoking and hypertensive disorders during pregnancy: A meta-analysis of observational studies. Obstet. Gynecol. 1999;93:622–628. doi: 10.1097/00006250-199904000-00031.
    1. Faiz A.S., Ananth C.V. Etiology and risk factors for placenta previa: An overview and meta-analysis of observational studies. J. Matern. Fetal Neonatal Med. 2003;13:175–190. doi: 10.1080/jmf.13.3.175.190.
    1. Hung T.H., Hsieh C.C., Hsu J.J., Chiu T.H., Lo L.M., Hsieh T.T. Risk factors for placenta previa in an Asian population. Int. J. Gynaecol. Obstet. 2007;97:26–30. doi: 10.1016/j.ijgo.2006.12.006.
    1. Kolas T., Nakling J., Salvesen K.A. Smoking during pregnancy increases the risk of preterm births among parous women. Acta Obstet. Gynecol. Scand. 2000;79:644–648.
    1. Fantuzzi G., Aggazzotti G., Righi E., Facchinetti F., Bertucci E., Kanitz S., Barbone F., Sansebastiano G., Battaglia M.A., Leoni V., et al. Preterm delivery and exposure to active and passive smoking during pregnancy: A case-control study from Italy. Paediatr. Perinat. Epidemiol. 2007;21:194–200. doi: 10.1111/j.1365-3016.2007.00815.x.
    1. Jaddoe V.W., Troe E.J., Hofman A., Mackenbach J.P., Moll H.A., Steegers E.A., Witteman J.C. Active and passive maternal smoking during pregnancy and the risks of low birthweight and preterm birth: The Generation R Study. Paediatr. Perinat. Epidemiol. 2008;22:162–171. doi: 10.1111/j.1365-3016.2007.00916.x.
    1. Wisborg K., Kesmodel U., Henriksen T.B., Olsen S.F., Secher N.J. Exposure to tobacco smoke in utero and the risk of stillbirth and death in the first year of life. Am. J. Epidemiol. 2001;154:322–327. doi: 10.1093/aje/154.4.322.
    1. Hogberg L., Cnattingius S. The influence of maternal smoking habits on the risk of subsequent stillbirth: Is there a causal relation? BJOG. 2007;114:699–704. doi: 10.1111/j.1471-0528.2007.01340.x.
    1. Mitchell E.A., Milerad J. Smoking and the sudden infant death syndrome. Rev. Environ. Health. 2006;21:81–103. doi: 10.1515/REVEH.2006.21.2.81.
    1. Sharpe R.M., Franks S. Environment, lifestyle and infertility—An inter-generational issue. Nat. Cell Biol. 2002;4:s33–s40. doi: 10.1038/ncb-nm-fertilityS33.
    1. Zenzes M.T., Krishnan S., Krishnan B., Zhang H., Casper R.F. Cadmium accumulation in follicular fluid of women in in vitro fertilization-embryo transfer is higher in smokers. Fertil. Steril. 1995;64:599–603. doi: 10.1016/S0015-0282(16)57799-1.
    1. Younglai E.V., Foster W.G., Hughes E.G., Trim K., Jarrell J.F. Levels of environmental contaminants in human follicular fluid, serum, and seminal plasma of couples undergoing in vitro fertilization. Arch. Environ. Contam. Toxicol. 2002;43:121–126. doi: 10.1007/s00244-001-0048-8.
    1. Neal M.S., Zhu J., Foster W.G. Quantification of benzo[a]pyrene and other PAHs in the serum and follicular fluid of smokers versus non-smokers. Reprod. Toxicol. 2008;25:100–106. doi: 10.1016/j.reprotox.2007.10.012.
    1. Van Voorhis B.J., Dawson J.D., Stovall D.W., Sparks A.E., Syrop C.H. The effects of smoking on ovarian function and fertility during assisted reproduction cycles. Obstet. Gynecol. 1996;88:785–791. doi: 10.1016/0029-7844(96)00286-4.
    1. Ness R.B., Grisso J.A., Hirschinger N., Markovic N., Shaw L.M., Day N.L., Kline J. Cocaine and tobacco use and the risk of spontaneous abortion. N. Engl. J. Med. 1999;340:333–339. doi: 10.1056/NEJM199902043400501.
    1. Huang J., Okuka M., McLean M., Keefe D.L., Liu L. Effects of cigarette smoke on fertilization and embryo development in vivo. Fertil. Steril. 2009;92:1456–1465. doi: 10.1016/j.fertnstert.2008.07.1781.
    1. Zhao Z., Reece E.A. Nicotine-induced embryonic malformations mediated by apoptosis from increasing intracellular calcium and oxidative stress. Birth Defects Res. B Dev. Reprod. Toxicol. 2005;74:383–391. doi: 10.1002/bdrb.20052.
    1. Holloway A.C., Kellenberger L.D., Petrik J.J. Fetal and neonatal exposure to nicotine disrupts ovarian function and fertility in adult female rats. Endocrine. 2006;30:213–216. doi: 10.1385/ENDO:30:2:213.
    1. Mokhtar N., Rajikin M.H., Zakaria Z. Role of tocotrienol-rich palm vitamin E on pregnancy and preimplantation embryos in nicotine treated rats. Biomed. Res. 2008;19:181–184.
    1. Rajikin M.H., Latif E.S., Mar M.R., Mat Top A.G., Mokhtar N.M. Deleterious effects of nicotine on the ultrastructure of oocytes: Role of gamma-tocotrienol. Med. Sci. Monit. 2009;15:BR378–BR383.
    1. Asadi E., Mehrdad J., Mohammad J.G. Effect of vitamin E on oocytes apoptosis in nicotine-treated mice. Iran. J. Basic Med. Sci. 2012;15:880–884.
    1. Kamsani Y.S., Rajikin M.H., Nor-Ashikin M.N.K., Nuraliza A.S., Chatterjee A. Nicotine-induced cessation of embryonic development is reversed by γ-tocotrienol in mice. Med. Sci. Monit. Basic Res. 2013;19:87–92. doi: 10.12659/MSMBR.883822.
    1. Phoebe C.J., Julie A.M., Emma L.B., Philip M.H., Keith T.J. Increased zona pellucida thickness and meiotic spindle disruption in oocytes from cigarette smoking mice. Hum. Reprod. 2011;26:878–884. doi: 10.1093/humrep/deq393.
    1. Agarwal A., Gupta S., Sekhon L., Shah R. Redox considerations in female reproductive function and assisted reproduction: From molecular mechanisms to health implications. Antioxid. Redox Signal. 2008;10:1375–1403. doi: 10.1089/ars.2007.1964.
    1. Ames B.N., Shigenaga M.K., Hagen T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA. 1993;90:7915–7922. doi: 10.1073/pnas.90.17.7915.
    1. Puglia C.D., Powell S.R. Inhibition of cellular antioxidants: A possible mechanism of toxic cell injury. Environ. Health Perspect. 1984;57:307–311. doi: 10.1289/ehp.8457307.
    1. Evans M.D., Dizdaroglu M., Cooke M.S. Oxidative DNA damage and disease: Induction, repair and significance. Mutat. Res. 2004;567:1–61. doi: 10.1016/j.mrrev.2003.11.001.
    1. Dennery P.A. Role of redox in fetal development and neonatal diseases. Antioxid. Redox Signal. 2004;6:147–153. doi: 10.1089/152308604771978453.
    1. Lee T.H., Wu M.Y., Chen M.J., Chao K.H., Ho H.N., Yang Y.S. Nitric oxide is associated with poor embryo quality and pregnancy outcome in in vitro fertilization cycles. Fertil. Steril. 2004;82:126–131. doi: 10.1016/j.fertnstert.2004.02.097.
    1. Sharma R.K., Agarwal A. Role of reactive oxygen species in gynecologic diseases. Reprod. Med. Biol. 2004;3:177–199. doi: 10.1111/j.1447-0578.2004.00068.x.
    1. Guerin P., El Mouatassim S., Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum. Reprod. Update. 2001;7:175–189. doi: 10.1093/humupd/7.2.175.
    1. Agarwal A., Saleh R.A., Bedaiwy M.A. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil. Steril. 2003;79:829–843. doi: 10.1016/S0015-0282(02)04948-8.
    1. Jurisicova A., Varmuza S., Casper R.F. Programmed cell death and human embryo fragmentation. Mol. Hum. Reprod. 1996;2:93–98. doi: 10.1093/molehr/2.2.93.
    1. Walsh S.W., Wang Y. Secretion of lipid peroxides by the human placenta. Am. J. Obstet. Gynecol. 1993;169:1462–1466. doi: 10.1016/0002-9378(93)90419-J.
    1. Myatt L., Cui X. Oxidative stress in the placenta. Histochem. Cell Biol. 2004;122:369–382. doi: 10.1007/s00418-004-0677-x.
    1. Poston L., Raijmakers M.T. Trophoblast oxidative stress, antioxidants and pregnancy outcome—A review. Placenta. 2004;25(Suppl. A):S72–S78. doi: 10.1016/j.placenta.2004.01.003.
    1. Wang Y., Walsh S.W. Placental mitochondria as a source of oxidative stress in pre-eclampsia. Placenta. 1998;19:581–586. doi: 10.1016/S0143-4004(98)90018-2.
    1. Jauniaux E., Watson A.L., Hempstock J., Bao Y., Skepper J.N., Burton G.J. Onset of maternal arterial blood flow and placental oxidative stress: A possible factor in human early pregnancy failure. Am. J. Pathol. 2000;157:2111–2122. doi: 10.1016/S0002-9440(10)64849-3.
    1. Parman T., Wiley M.J., Wells P.G. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat. Med. 1999;5:582–585.
    1. Burton G.J., Hempstock J., Jauniaux E. Oxygen, early embryonic metabolism and free radical-mediated embryopathies. Reprod. Biomed. Online. 2003;6:84–96. doi: 10.1016/S1472-6483(10)62060-3.
    1. Nicol C.J., Zielenski J., Tsui L.C., Wells P.G. An embryoprotective role for glucose-6-phosphate dehydrogenase in developmental oxidative stress and chemical teratogenesis. FASEB J. 2000;14:111–127. doi: 10.1096/fasebj.14.1.111.
    1. Murphy A.A., Santanam N., Parthasarathy S. Endometriosis: A disease of oxidative stress? Semin. Reprod. Endocrinol. 1998;16:263–273. doi: 10.1055/s-2007-1016286.
    1. Rong R., Ramachandran S., Santanam N., Murphy A.A., Parthasarathy S. Induction of monocyte chemotactic protein-1 in peritoneal mesothelial and endometrial cells by oxidized low-density lipoprotein and peritoneal fluid from women with endometriosis. Fertil. Steril. 2002;78:843–848. doi: 10.1016/S0015-0282(02)03333-2.
    1. Szczepanska M., Kozlik J., Skrzypczak J., Mikolajczyk M. Oxidative stress may be a piece in the endometriosis puzzle. Fertil. Steril. 2003;79:1288–1293. doi: 10.1016/S0015-0282(03)00266-8.
    1. Bedaiwy M.A., Falcone T. Peritoneal fluid environment in endometriosis. Clinicopathological implications. Minerva Ginecol. 2003;55:333–345.
    1. Jackson L.W., Schisterman E.F., Dey-Rao R., Browne R., Armstrong D. Oxidative stress and endometriosis. Hum. Reprod. 2005;20:2014–2020. doi: 10.1093/humrep/dei001.
    1. Mier-Cabrera M., Jimenez-Zamudio L., Garcia-Latorre E., Cruz-Orozco O., Hernandez-Guerrero C. Quantitative and qualitative peritoneal immune profiles, T-cell apoptosis and oxidative stress-associated characteristics in women with minimal and mild endometriosis. BJOG. 2011;118:6–16. doi: 10.1111/j.1471-0528.2010.02777.x.
    1. Sharma I., Dhaliwal L.K., Saha S.C., Sangwan S., Dhawan V. Role of 8-iso-prostaglandin F 2alpha and 25-hydroxycholesterol in the pathophysiology of endometriosis. Fertil. Steril. 2010;94:63–70. doi: 10.1016/j.fertnstert.2009.01.141.
    1. Gupta S., Agarwal A., Banerjee J., Alvarez J.G. The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss: A systematic review. Obstet. Gynecol. Surv. 2007;62:335–347. doi: 10.1097/01.ogx.0000261644.89300.df.
    1. Polak G., Rola R., Gogacz M., Koziol-Montewka M., Kotarski J. Malonyldialdehyde and total antioxidant status in the peritoneal fluid of infertile women. Ginekol. Pol. 1999;70:135–140.
    1. Polak G., Koziol-Montewka M., Tarkowski R., Kotarski J. Peritoneal fluid and plasma 4-hydroxynonenal and malonyldialdehyde concentrations in infertile women. Ginekol. Pol. 2011;72:1316–1320.
    1. Agarwal A., Gupta S., Sikka S. The role of free radicals and antioxidants in reproduction. Curr. Opin. Obstet. Gynecol. 2006;18:325–332. doi: 10.1097/01.gco.0000193003.58158.4e.
    1. Burton G.J., Jauniaux E. Placental oxidative stress: From miscarriage to preeclampsia. J. Soc. Gynecol. Investig. 2004;11:342–352. doi: 10.1016/j.jsgi.2004.03.003.
    1. Redman C.W., Sargent I.L. Placental stress and pre-eclampsia: A revised view. Placenta. 2009;30(Suppl. A):S38–S42. doi: 10.1016/j.placenta.2008.11.021.
    1. Burton G.J., Yung H.W., Cindrova-Davies T., Charnock-Jones D.S. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta. 2009;30(Suppl. A):S43–S48. doi: 10.1016/j.placenta.2008.11.003.
    1. Karowicz-Bilinska A. Lipid peroxides concentration in women with intrauterine growth restriction. Ginekol. Pol. 2004;75:6–9.
    1. Biri A., Bozkurt N., Turp A., Kavutcu M., Himmetoglu O., Durak I. Role of oxidative stress in intrauterine growth restriction. Gynecol. Obstet. Investig. 2007;64:187–192. doi: 10.1159/000106488.
    1. Hong Y.C., Lee K.H., Yi C.H., Ha E.H., Christiani D.C. Genetic susceptibility of term pregnant women to oxidative damage. Toxicol. Lett. 2002;129:255–262. doi: 10.1016/S0378-4274(02)00014-0.
    1. Frosali S., DiSimplicio P., Perrone S., DiGiuseppe D., Longini M., Tanganelli D., Buonocore G. Glutathione recycling and antioxidant enzyme activities in erythrocytes of term and preterm newborns at birth. Neonatology. 2004;85:188–194. doi: 10.1159/000075814.
    1. Mustafa M.D., Pathak R., Ahmed T., Ahmed R.S., Tripathi A.K., Guleria K., Banerjee B.D. Association of glutathione S-transferase M1 and T1 gene polymorphisms and oxidative stress markers in preterm labor. Clin. Biochem. 2010;43:1124–1128. doi: 10.1016/j.clinbiochem.2010.06.018.
    1. Pathak R., Suke S.G., Ahmed T., Ahmed R.S., Tripathi A.K., Guleria K., Sharma C.S., Makhijani S.D., Banerjee B.D. Organochlorine pesticide residue levels and oxidative stress in preterm delivery cases. Hum. Exp. Toxicol. 2010;29:351–358. doi: 10.1177/0748233710363334.
    1. Perkins A.V. Anti-oxidants in pregnancy Endogenous anti-oxidants in pregnancy and preeclampsia. Aust. N. Z. J. Obstet. Gynaecol. 2006;46:77–83. doi: 10.1111/j.1479-828X.2006.00532.x.
    1. Mustacich D., Powis G. Thioredoxin reductase. Biochem. J. 2000;346:1–8. doi: 10.1042/bj3460001.
    1. Rhee S.G., Chae H.Z., Kim K. Peroxiredoxins: A historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 2005;38:1543–1552. doi: 10.1016/j.freeradbiomed.2005.02.026.
    1. Gasdaska J.R., Berggren M., Powis G. Cell growth stimulation by the redox protein thioredoxin occurs by a novel helper mechanism. Cell Growth Differ. 1995;6:1643–1650.
    1. Saitoh M., Nishitoh H., Fujii M., Takeda K., Tobiume K., Sawada Y., Kawabata M., Miyazono K., Ichijo H. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J. 1998;17:2596–2606. doi: 10.1093/emboj/17.9.2596.
    1. Nordberg J., Arner E.S.J. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 2001;31:1287–1312. doi: 10.1016/S0891-5849(01)00724-9.
    1. Aerts L., Van A.F.A. Taurine and taurine-deficiency in the perinatal period. J. Perinat. Med. 2002;30:281–286. doi: 10.1515/JPM.2002.040.
    1. Uriu-Adams J.Y., Keen C.L. Zinc and reproduction: Effects of zinc deficiency on prenatal and early postnatal development. Birth Defects Res. B. Dev. Reprod. Toxicol. 2010;89:313–325. doi: 10.1002/bdrb.20264.
    1. Silvia I.A., Castañón S.G., Ruata M.L., Aragüés E.F., Terraz P.B., Irazabal Y.G., González E.G., Rodríguez B.G. Updating of normal levels of copper, zinc and selenium in serum of pregnant women. J. Trace Elem. Med. Biol. 2007;21(Suppl. 1):49–52. doi: 10.1016/j.jtemb.2007.09.023.
    1. Hess S.Y., King J.C. Effects of maternal zinc supplementation on pregnancy and lactation outcomes. Food Nutr. Bull. 2009;30(Suppl. 1):S60–S78. doi: 10.1177/15648265090301S105.
    1. Levine M., Katz A., Padayatty S.J., Vitamin C. In: Modern Nutrition in Health and Disease. Shils M.E., Shike M., Ross A.C., Caballero B., Cousins R.J., editors. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2006. pp. 507–524.
    1. Zhang C., Williams M.A., King I.B., Dashow E.E., Sorensen T.K., Frederick I.O., Thompson M.L., Luthy D.A. Vitamin C and the risk of preeclampsia—Results from dietary questionnaire and plasma assay. Epidemiology. 2002;13:409–416. doi: 10.1097/00001648-200207000-00008.
    1. Henmi H., Endo T., Kitajima Y., Manase K., Hata H., Kudo R. Effects of ascorbic acid supplementation on serum progesterone levels in patients with a luteal phase defect. Fertil. Steril. 2003;80:459–461. doi: 10.1016/S0015-0282(03)00657-5.
    1. Westphal L.M., Polan M.L., Trant A.S., Mooney S.B. A nutritional supplement for improving fertility in women: A pilot study. J. Reprod. Med. 2004;49:289–293.
    1. Rumiris D., Purwosunu Y., Wibowo N., Farina A., Sekizawa A. Lower rate of preeclampsia after antioxidant supplementation in pregnant women with low antioxidant status. Hypertens. Pregnancy. 2006;25:241–253. doi: 10.1080/10641950600913016.
    1. Traber M.G., Jeffrey A. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 2007;43:4–15. doi: 10.1016/j.freeradbiomed.2007.03.024.
    1. Fraser W.D., Audibert F., Bujold E., Leduc L., Xu H., Boulvain M., Julien P. The Vitamin E debate: Implications for ongoing trials of pre-eclampsia prevention. BJOG. 2005;112:684–688. doi: 10.1111/j.1471-0528.2005.00675.x.
    1. Parvin B., Kobra H., Fatemeh A., Nazli N. Effects of vitamin E supplementation on some pregnancy health indices: A randomized clinical trial. Int. J. Gen. Med. 2011;4:461–464. doi: 10.2147/IJGM.S20107.
    1. De Vriese S.R., Dhont M., Christophe A.B. Oxidative stability of low density lipoproteins and vitamin E levels increase in maternal blood during normal pregnancy. Lipids. 2001;36:361–366. doi: 10.1007/s11745-001-0728-2.
    1. Chelchowska M., Laskowska-Klita T., Leibschang J. The effect of tobacco smoking during pregnancy on concentration of vitamin E in blood of mothers and their newborns in umbilical cord blood. Ginekol. Pol. 2006;77:263–268.
    1. Von Mandach U., Huch R., Huch A. Maternal and cord serum vitamin E levels in normal and abnormal pregnancy. Int. J. Vitam. Nutr. Res. 1994;64:26–32.
    1. Tamura T., Goldenberg R.L., Johnston K.E., Cliver S.P., Hoffman H.J. Serum concentrations of zinc, folate, vitamins A and E, and proteins, and their relationships to pregnancy outcome. Acta Obstet. Gynecol. Scand. Suppl. 1997;165:63–70.
    1. Cicek N., Eryilmaz O.G., Sarikaya E., Gulerman C., Genc Y. Vitamin E effect on controlled ovarian stimulation of unexplained infertile women. J. Assist. Reprod. Genet. 2012;29:325–328. doi: 10.1007/s10815-012-9714-1.
    1. Traber G.M. Vitamin E Inadequacy in Humans: Causes and Consequences. Adv. Nutr. 2014;5:503–514. doi: 10.3945/an.114.006254.
    1. Barrie M.M. Vitamin E deficiency in rats: Fertility in the female. Biochem. J. 1938;32:2134–2137. doi: 10.1042/bj0322134.
    1. Simsek M., Naziroglu M., Simsek H., Cay M., Aksakal M., Kumru S. Blood plasma levels of lipoperoxides, glutathione peroxidase, beta carotene, vitamin A and E in women with habitual abortion. Cell Biochem. Funct. 1998;16:227–231. doi: 10.1002/(SICI)1099-0844(1998120)16:4<227::AID-CBF787>;2-M.
    1. Ibrahim S.A., Abd el-Maksoud A., Nassar M.F. Nutritional stunting in Egypt: Which nutrient is responsible? East. Mediterr. Health J. 2002;8:272–280.
    1. Fares S., Sethom M.M., Khouaja-Mokrani C., Jabnoun S., Feki M., Kaabachi N. Vitamin A, E, and D deficiencies in Tunisian very low birth weight neonates: Prevalence and risk factors. Pediatr. Neonatol. 2014;55:196–201. doi: 10.1016/j.pedneo.2013.09.006.
    1. Saleh H., Omar E., Froemming G., Said R. Tocotrienol rich fraction supplementation confers protection on the ovary from cyclophasphamide induced apoptosis. Asian Pac. J. Trop. Dis. 2014;4:234. doi: 10.1016/S2222-1808(14)60532-6.
    1. Saleh H., Omar E., Froemming G., Said R. Tocotrienol preserves ovarian function in cyclophosphamide therapy. Hum. Exp. Toxicol. 2015;34:946–952. doi: 10.1177/0960327114564793.
    1. Nasibah A., Rajikin M.H., Nor-Ashikin M.N.K., Nuraliza A.S. Tocotrienol improves the quality of impaired mouse embryos induced by corticosterone; Proceedings of the Symposium on Humanities, Science and Engineering Research (SHUSER2012); Kuala Lumpur, Malaysia. 24–27 June 2012; pp. 135–138.
    1. Lee E., Min S.-H., Song B.-S., Yeon J.-Y., Kim J.-W., Bae J.-H., Park S.-Y., Lee Y.-H., Kim S.-U., Lee D.-S., et al. Exogenous γ-tocotrienol promotes preimplantation development and improves the quality of porcine embryos. Reprod. Fertil. Dev. 2014 doi: 10.1071/RD13167.
    1. Paumgartten F.J.R., De-Carvalho R.R., Araujo I.B., Pinto F.M., Borges O.O., Souza C.A.M., Kuriyama S.M. Evaluation of the developmental toxicity of annatto in the rat. Food Chem. Toxicol. 2002;40:1595–1601. doi: 10.1016/S0278-6915(02)00133-3.
    1. Syairah S.M.M., Rajikin M.H., Sharaniza A.-R., Nor-Ashikin M.N.K., Anne T., Barrie T. Annatto (Bixa orellana) derived δ-tocotrienol supplementation suppresses PIK3CA oncogene expression in 2- and 4-cell embryos of nicotine-induced mice. Anticancer Res. 2014;34:6064.
    1. Syairah S.M.M., Rajikin M.H., Sharaniza A.-R. Supplementation of annatto (Bixa orellana)-derived δ-tocotrienol produced high number of morula through increased expression of 3-phosphoinositide dependent protein kinase-1 (PDK1) in mice. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2015;9:741–745.
    1. Syairah S.M.M., Rajikin M.H., Sharaniza A.R., Nor-Ashikin N.K., Kamsani Y.S. Chromosomal status in murine preimplantation 2-cell embryos following annatto (Bixa orellana)-derived pure delta-tocotrienol supplementation in normal and nicotine-treated mice. WASJ. 2016;34:1855–1859. doi: 10.5829/idosi.wasj.1855.1859.
    1. Syairah S.M.M., Rajikin M.H., Sharaniza A.R., Nor-Ashikin M.N.K. Annatto (Bixa orellana) δ-TCT supplementation protected against embryonic DNA damages through alterations in PI3K/Akt-Cyclin D1 pathway. Int. J. Vitam. Nutr. Res. 2017 accepted.
    1. Sugahara R., Sato A., Uchida A., Shiozawa S., Sato C., Virgona N., Yano T. Annatto tocotrienol induces a cytotoxic effect on human prostate cancer PC3 cells via the simultaneous inhibition of Src and Stat3. J. Nutr. Sci. Vitaminol. 2015;61:497–501. doi: 10.3177/jnsv.61.497.
    1. Olson S.E., Seidel G.E., Jr. Culture of in vitro-produced bovine embryos with vitamin E improves development in vitro and after transfer to recipients. Biol. Reprod. 2000;62:248–252. doi: 10.1095/biolreprod62.2.248.
    1. Kitagawa Y., Suzuki K., Yoneda A., Watanabe T. Effects of oxygen concentration and antioxidants on the in vitro developmental ability, production of reactive oxygen species (ROS), and DNA fragmentation in porcine embryos. Theriogenology. 2004;62:1186–1197. doi: 10.1016/j.theriogenology.2004.01.011.
    1. Thiyagarajan B., Valivittan K. Ameliorating effect of vitamin E on in vitro development of preimplantation buffalo embryos. J. Assist. Reprod. Genet. 2009;26:217–225. doi: 10.1007/s10815-009-9302-1.
    1. Natarajan R., Shankar M.B., Munuswamy D. Effect of α-tocopherol supplementation on in vitro maturation of sheep oocytes and in vitro development of preimplantation sheep embryos to the blastocyst stage. J. Assist. Reprod. Genet. 2010;27:483–490. doi: 10.1007/s10815-010-9430-7.

Source: PubMed

3
Iratkozz fel