Bugs in the system: bringing the human microbiome to bear in cancer immunotherapy

Christopher Strouse, Ashutosh Mangalam, Jun Zhang, Christopher Strouse, Ashutosh Mangalam, Jun Zhang

Abstract

The influence of the composition of the human microbiome on the efficacy of cancer directed immunotherapies, such as antibodies directed against the programmed cell death 1 protein (PD-1) or its ligand (PD-L1), has garnered increasing attention as the role of immunotherapies in the care of cancer has grown. Dysbiosis (altered microbiota) has recently been reported to adversely affect the efficacy of cancer directed immunotherapies, and correction of this dysbiosis has the potential to improve the efficacy of these treatments. However, the exact mechanisms underlying this relationship remains unknown. Current methods for characterizing the microbiome likely capture only a small portion of the highly complex interaction between the microbiome and the immune system. Here we discuss the recent reports of the influence of dysbiosis on cancer immunotherapy, methods to more fully characterize the interaction between the microbiome and the immune system, and methods of modulating the immune system to improve the efficacy of cancer immunotherapy.

Keywords: Microbiome; cancer immunotherapy.

References

    1. Postow MA, Callahan MK, Wolchok JD.. Immune checkpoint blockade in cancer therapy. J Clin Oncol. 2015;33:1974–1982.
    1. Shen N, Clemente JC. Engineering the microbiome: a novel approach to immunotherapy for allergic and immune diseases. Curr Allergy Asthma Rep. 2015;15:39.
    1. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–97.
    1. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103.
    1. Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Invest. 2014;124:4212–4218.
    1. Selby W, Pavli P, Crotty B, Florin T, Radford-Smith G, Gibson P, Mitchell B, Connell W, Read R, Merrett M, et al. Two-year combination antibiotic therapy with clarithromycin, rifabutin, and clofazimine for Crohn’s disease. Gastroenterology. 2007;132:2313–2319.
    1. Kaderbhai C, Richard C, Fumet JD, Aarnink A, Foucher P, Coudert B, Favier L, Lagrange A, Limagne E, Boidot R, et al. Antibiotic use does not appear to influence response to nivolumab. Anticancer Res. 2017;37:3195–3200.
    1. Thompson J, Szabo A, Arce-Lara C, Menon S. Microbiome & immunotherapy: antibiotic use is associated with inferior survival for lung cancer patients receiving PD-1 inhibitors. J Thorac Oncol. 2017;12:S1998.
    1. Zhu W, Winter MG, Byndloss MX, Spiga L, Duerkop BA, Hughes ER, Büttner L, de Lima Romão E, Behrendt CL, Lopez CA, et al. Precision editing of the gut microbiota ameliorates colitis. Nature. 2018;553:208–211.
    1. Hughes ER, Winter MG, Duerkop BA, Spiga L, Furtado de Carvalho T, Zhu W, Gillis CC, Büttner L, Smoot MP, Behrendt CL, et al. Microbial respiration and formate oxidation as metabolic signatures of inflammation-associated dysbiosis. Cell Host Microbe. 2017;21:208–219.
    1. Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14:e1002533.
    1. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214.
    1. Hayes RB, Ahn J, Fan X, Peters BA, Ma Y, Yang L, Agalliu I, Burk RD, Ganly I, Purdue MP, et al. Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol. 2018;4:358–365.
    1. Liu H-X, Tao -L-L, Zhang J, Zhu Y-G, Zheng Y, Liu D, Zhou M, Ke H, Shi -M-M, Qu J-M. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int J Cancer. 2018;142:769–778.
    1. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N, Ngom-Bru C, Blanchard C, Junt T, Nicod LP, Harris NL, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159.
    1. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–573.
    1. Zou S, Caler L, Colombini-Hatch S, Glynn S, Srinivas P. Research on the human virome: where are we and what is next. Microbiome. 2016;4:32.

Source: PubMed

3
Iratkozz fel